Vibration shock disturbance modeling in the rotating machinery fault diagnosis: A generalized mixture Gaussian model

被引:1
|
作者
Wang, Ran [1 ]
Gu, Zhixin [1 ]
Wang, Chaoge [1 ]
Yu, Mingjie [1 ]
Han, Wentao [1 ]
Yu, Liang [2 ,3 ]
机构
[1] Shanghai Maritime Univ, Coll Logist Engn, Shanghai 201306, Peoples R China
[2] Northwestern Polytech Univ, Sch Civil Aviat, Xian 710072, Peoples R China
[3] State Key Lab Airliner Integrat Technol & Flight S, Shanghai 200126, Peoples R China
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
Rotating machinery; Fault feature extraction; Complex noise modeling; Mixture of exponential power distribution; FEATURE-EXTRACTION; BEARING; DECOMPOSITION; TOOL;
D O I
10.1016/j.ymssp.2024.111594
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In real-world industrial environments, complex background noises are composed of various components, deviating from a simple Gaussian distribution like shock noise. In this work, a robust noise modeling method based on the mixture of exponential power (MoEP) distributions is developed to address this issue. To proficiently extract the fault characteristics, the signal's 2-D representation is attained via Fast-SC, both of the fault features' low-rankness and the complex noise are combined in a signal model. Then, a penalized function of the noise model is combined to further improve the performance of the method. The model is designated as the PMoEP enhanced low-rank model (PMoEP-LR). The Generalized Expectation-Maximization (GEM) algorithm is utilized to estimate the low-rank spectral correlation matrix and deduce all parameters of the PMoEP-LR model. Finally, the enhanced envelope spectrum (EES) is used to detect the defect characteristic. The efficacy of the proposed method is showcased by analyzing both simulated and real data.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Fault diagnosis system of rotating machinery vibration signal
    You, Lei
    Hu, Jun
    Fang, Fang
    Duan, Lintao
    CEIS 2011, 2011, 15
  • [2] Generalized sparse filtering for rotating machinery fault diagnosis
    Chun Cheng
    Yan Hu
    Jinrui Wang
    Haining Liu
    Michael Pecht
    The Journal of Supercomputing, 2021, 77 : 3402 - 3421
  • [3] Generalized sparse filtering for rotating machinery fault diagnosis
    Cheng, Chun
    Hu, Yan
    Wang, Jinrui
    Liu, Haining
    Pecht, Michael
    JOURNAL OF SUPERCOMPUTING, 2021, 77 (04): : 3402 - 3421
  • [4] Convolutional Neural Network-Based Bayesian Gaussian Mixture for Intelligent Fault Diagnosis of Rotating Machinery
    Li, Guoqiang
    Wu, Jun
    Deng, Chao
    Chen, Zuoyi
    Shao, Xinyu
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [5] AR model for diagnosis of rotating machinery fault
    Huang, Shi-Hong
    Chen, Yong
    Gao, Wei
    Qilunji Jishu/Turbine Technology, 2001, 43 (06):
  • [6] Vibration Signal Models in Rotating Machinery Fault Diagnosis:A Review
    He, Qingbo
    Li, Tianqi
    Peng, Zhike
    Zhendong Ceshi Yu Zhenduan/Journal of Vibration, Measurement and Diagnosis, 2024, 44 (04): : 629 - 639
  • [7] Concurrent Fault Diagnosis for Rotating Machinery Based on Vibration Sensors
    Zhang, Qing-Hua
    Hu, Qin
    Sun, Guoxi
    Si, Xiaosheng
    Qin, Aisong
    INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS, 2013,
  • [8] Fault diagnosis in rotating machinery
    Lees, A.W.
    Proceedings of the International Modal Analysis Conference - IMAC, 2000, 1 : 313 - 319
  • [9] Fault diagnosis of rotating machinery
    Edwards, S.
    Lees, A.W.
    Friswell, M.I.
    Shock and Vibration Digest, 1998, 30 (01): : 4 - 13
  • [10] Fault diagnosis in rotating machinery
    Lees, AW
    IMAC-XVIII: A CONFERENCE ON STRUCTURAL DYNAMICS, VOLS 1 AND 2, PROCEEDINGS, 2000, 4062 : 313 - 319