Granular Biphasic Colloidal Hydrogels for 3D Bioprinting

被引:5
|
作者
Deo, Kaivalya A. [1 ]
Murali, Aparna [1 ]
Tronolone, James J. [1 ]
Mandrona, Cole [1 ]
Lee, Hung Pang [1 ]
Rajput, Satyam [1 ]
Hargett, Sarah E. [1 ]
Selahi, Amirali [1 ]
Sun, Yuxiang [2 ]
Alge, Daniel L. [1 ,3 ]
Jain, Abhishek [1 ,4 ,5 ]
Gaharwar, Akhilesh K. [1 ,3 ,5 ,6 ,7 ]
机构
[1] Texas A&M Univ, Coll Engn, Biomed Engn, College Stn, TX 77843 USA
[2] Texas A&M Univ, Coll Agr, Nutr, College Stn, TX 77843 USA
[3] Texas A&M Univ, Coll Engn, Mat Sci & Engn, College Stn, TX 77843 USA
[4] Texas A&M Hlth Sci Ctr, Sch Med, Med Physiol, Bryan, TX USA
[5] Houston Methodist Res Inst, Cardiovasc Sci, Houston, TX 77030 USA
[6] Texas A&M Univ, Interdisciplinary Grad Program Genet & Genom, College Stn, TX 77843 USA
[7] Texas A&M Univ, Ctr Remote Hlth Technol & Syst, College Stn, TX 77843 USA
基金
美国国家科学基金会;
关键词
3D bioprinting; drug delivery; granular colloidal hydrogels; hydrogel microparticles; nanocomposite; CELL; FABRICATION;
D O I
10.1002/adhm.202303810
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Granular hydrogels composed of hydrogel microparticles are promising candidates for 3D bioprinting due to their ability to protect encapsulated cells. However, to achieve high print fidelity, hydrogel microparticles need to jam to exhibit shear-thinning characteristics, which is crucial for 3D printing. Unfortunately, this overpacking can significantly impact cell viability, thereby negating the primary advantage of using hydrogel microparticles to shield cells from shear forces. To overcome this challenge, a novel solution: a biphasic, granular colloidal bioink designed to optimize cell viability and printing fidelity is introduced. The biphasic ink consists of cell-laden polyethylene glycol (PEG) hydrogel microparticles embedded in a continuous gelatin methacryloyl (GelMA)-nanosilicate colloidal network. Here, it is demonstrated that this biphasic bioink offers outstanding rheological properties, print fidelity, and structural stability. Furthermore, its utility for engineering complex tissues with multiple cell types and heterogeneous microenvironments is demonstrated, by incorporating beta-islet cells into the PEG microparticles and endothelial cells in the GelMA-nanosilicate colloidal network. Using this approach, it is possible to induce cell patterning, enhance vascularization, and direct cellular function. The proposed biphasic bioink holds significant potential for numerous emerging biomedical applications, including tissue engineering and disease modeling. A novel biphasic, granular colloidal bioink is introduced, and optimized for 3D bioprinting. Demonstrating superior rheological properties and print fidelity, this bioink ensures high cell viability. It supports complex tissue engineering with multiple cell types, enhancing cellular functions and vascularization, critical for advanced biomedical applications. image
引用
收藏
页数:12
相关论文
共 50 条
  • [21] 3D bioprinting for tissue engineering: Stem cells in hydrogels
    Mehrban, Nazia
    Teoh, Gui Zhen
    Birchall, Martin Anthony
    INTERNATIONAL JOURNAL OF BIOPRINTING, 2016, 2 (01): : 6 - 19
  • [22] Characterisation of hyaluronic acid methylcellulose hydrogels for 3D bioprinting
    Law, Nicholas
    Doney, Brandon
    Glover, Hayley
    Qin, Yahua
    Aman, Zachary M.
    Sercombe, Timothy B.
    Liew, Lawrence J.
    Dilley, Rodney J.
    Doyle, Barry J.
    JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2018, 77 : 389 - 399
  • [23] Biocompatible Nanocellulose Hydrogels for 3D Bioprinting of Tissue Constructs
    Gatenholm, P.
    Mantas, A.
    Gonzalez, G. Toriz
    Haag, D.
    TISSUE ENGINEERING PART A, 2015, 21 : S224 - S224
  • [24] Biomimetic bioinks of nanofibrillar polymeric hydrogels for 3D bioprinting
    Wang, Yue
    Li, Jiahui
    Li, Yunfeng
    Yang, Bai
    NANO TODAY, 2021, 39
  • [25] Composite hydrogels and their application for 3D Bioprinting in the Regenerative medicine
    Valchanov, Petar
    Pavlov, Stoyan
    Chervenkov, Trifon
    PROCEEDINGS OF THE 2020 INTERNATIONAL CONFERENCE ON BIOMEDICAL INNOVATIONS AND APPLICATIONS (BIA 2020), 2020, : 25 - 28
  • [26] Programmable Granular Hydrogel Inks for 3D Bioprinting Applications
    Ribeiro, Lucas S. S.
    Gaspar, Vitor M.
    Sobreiro-Almeida, Rita
    Camargo, Emerson R. R.
    Mano, Joao F.
    ADVANCED MATERIALS TECHNOLOGIES, 2023, 8 (16)
  • [27] 3D Bioprinting of Hyaline Articular Cartilage: Biopolymers, Hydrogels, and Bioinks
    Volova, Larisa T.
    Kotelnikov, Gennadiy P.
    Shishkovsky, Igor
    Volov, Dmitriy B.
    Ossina, Natalya
    Ryabov, Nikolay A.
    Komyagin, Aleksey V.
    Kim, Yeon Ho
    Alekseev, Denis G.
    POLYMERS, 2023, 15 (12)
  • [28] 3D Bioprinting of Physical Hydrogels Based on Peptide Oligosaccharide Interaction
    Wieduwild, R.
    Tsurkan, M.
    Werner, C.
    Zhang, Y.
    TISSUE ENGINEERING PART A, 2015, 21 : S42 - S42
  • [29] Designing methacrylic anhydride-based hydrogels for 3D bioprinting
    Shen, Naisi
    Li, Zhen
    Yang, Pu
    Liu, Xiangjun
    Ju, Yikun
    Hu, Yue
    Fang, Bairong
    Liu, Liangle
    INTERNATIONAL JOURNAL OF BIOPRINTING, 2025, 11 (01) : 84 - 138
  • [30] Dual-crosslinked methylcellulose hydrogels for 3D bioprinting applications
    Shin, Ji Youn
    Yeo, Yong Ho
    Jeong, Jae Eun
    Park, Su A.
    Park, Won Ho
    CARBOHYDRATE POLYMERS, 2020, 238