Multi-bump Solutions for a Strongly Degenerate Problem with Exponential Growth in RN

被引:0
|
作者
dos Santos, Jefferson Abrantes [1 ]
Figueiredo, Giovany M. [2 ]
Severo, Uberlandio B. [3 ]
机构
[1] Univ Fed Campina Grande, Unidade Acad Matemat UAMat, BR-58429900 Campina Grande, PB, Brazil
[2] Univ Brasilia, Dept Matemat, BR-70910900 Brasilia, DF, Brazil
[3] Univ Fed Paraiba, Dept Matemat, BR-58051900 Joao Pessoa, PB, Brazil
关键词
Orlicz-Sobolev spaces; Critical exponential growth; Multi-bump solutions; Variational methods; POSITIVE SOLUTIONS; MULTIPLICITY; EXISTENCE; EQUATIONS;
D O I
10.1007/s12220-024-01687-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study a class of strongly degenerate problems with critical exponential growth in R-N, N >= 2. We do not assume ellipticity condition on the operator and thus the maximum principle given by Lieberman (Commun Partial Differ Equ 16:311-361,1991) can not be accessed. Therefore, a careful and delicate analysis is necessary and some ideas can not be applied in our scenario. The arguments developed in this paper are variational and our main result completes the study made in the current literature about the subject. Moreover, when N=2 or N=3 the solutions model the slow steady-state flow of a fluid of Prandtl-Eyring type.
引用
收藏
页数:51
相关论文
共 50 条
  • [31] Normalized multi-bump solutions of nonlinear Kirchhoff equations
    Shu, Zhidan
    Zhang, Jianjun
    AIMS MATHEMATICS, 2024, 9 (06): : 16790 - 16809
  • [32] EXISTENCE OF MULTI-BUMP SOLUTIONS FOR A NONLINEAR KIRCHHOFF EQUATION
    Chen, Yongpeng
    Yang, Zhipeng
    JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2024, 8 (02): : 233 - 248
  • [33] Multi-bump Solutions for a Choquard Equation with Nonsymmetric Potential
    Gao, Fashun
    Yang, Minbo
    Zheng, Yu
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (06)
  • [34] Existence of multi-bump solutions for a class of quasilinear problems
    Alves, Claudianor O.
    ADVANCED NONLINEAR STUDIES, 2006, 6 (04) : 491 - 509
  • [35] Existence of Multi-bump Solutions for a Class of Quasilinear Schrodinger Equations in Involving Critical Growth
    Liang, Sihua
    Zhang, Jihui
    MILAN JOURNAL OF MATHEMATICS, 2015, 83 (01) : 55 - 90
  • [36] Multi-bump solutions for the magnetic Schr?dinger-Poisson system with critical growth
    Ji, Chao
    Zhang, Yongde
    Radulescu, Vicentiu D.
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2022, (21) : 1 - 30
  • [37] Multi-bump Solutions for a Strongly Degenerate Problem with Exponential Growth in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^N$$\end{document}
    Jefferson Abrantes dos Santos
    Giovany M. Figueiredo
    Uberlandio B. Severo
    The Journal of Geometric Analysis, 2024, 34 (8):
  • [38] Multi-bump solutions of -Δu = K(x)un+2/n-2 on lattices in Rn
    Li, Yanyan
    Wei, Juncheng
    Xu, Haoyuan
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2018, 743 : 163 - 211
  • [39] Multi-bump solutions in a neural field model with external inputs
    Ferreira, Flora
    Erlhagen, Wolfram
    Bicho, Estela
    PHYSICA D-NONLINEAR PHENOMENA, 2016, 326 : 32 - 51
  • [40] Multi-bump solutions for the nonlinear Schrodinger-Poisson system
    Li, Gongbao
    Peng, Shuangjie
    Wang, Chunhua
    JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (05)