Efficient approach for optimal parameter estimation of PV using Pelican Optimization Algorithm

被引:2
|
作者
Ajay Rathod, Asmita [1 ]
Subramanian, Balaji [1 ]
机构
[1] Vellore Inst Technol, Sch Elect Engn, Vellore, India
来源
COGENT ENGINEERING | 2024年 / 11卷 / 01期
关键词
Solar Photovoltaic; Parameter Extraction; Pelican Optimization Algorithm; Single Diode Model; MODULES PARAMETERS; SOLAR-CELLS; IDENTIFICATION; EXTRACTION; MODEL;
D O I
10.1080/23311916.2024.2380805
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In order to optimize the performance of a Solar Photovoltaic (PV) system, it is necessary to develop an appropriate PV cell model and accurately determine the unknown parameters associated with the model. The process of extracting parameters for PV models is a complex optimization issue that involves nonlinearity and multiple models. Accurate estimation of the characteristics of PV units is crucial since these factors significantly affect the performance of PV systems in terms of power and current generation. Consequently, this research presents an advanced methodology, known as the Pelican Optimization Algorithm (POA), aimed to find the optimal values for the unspecified parameters of PV units. In this study, the Single Diode Model (SDM) is employed to analyze four datasets like RTC France, Photowatt-PWP201, STP-120/36, as well as STM6-40/36 PV panels. The POA algorithm is utilized to determine the unknown parameters of solar PV modules. Furthermore, to enhance the precision of the obtained solutions, this study incorporates the Newton-Raphson (NR) method into the POA algorithm. The POA achieves the optimum Root Mean Square Error (RMSE) values for the four PV models (RTC France, Photowatt-PWP201, STM6-40/36 and STP6-120/36) and the values are found to be 7.7298E-04, 2.0528E-03, 1.7220E-03 and 1.4458E-02 respectively. From the results, it is observed that, POA exhibit superior performance compared to the other MH optimization algorithms. Furthermore, the statistical findings show that the POA algorithm has a higher average robustness and accuracy than the other algorithms.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Parameter Optimization of PV based on Hybrid Genetic Algorithm
    Rong, Junfeng
    Wang, Bing
    Liu, Bo
    Zha, Xiaorui
    IFAC PAPERSONLINE, 2015, 48 (28): : 568 - 572
  • [32] Solar PV Detection Using an Optimal Template Approach with Genetic Algorithm
    Ling, Wenhua
    Dalzell, Geordie
    Yu, Xinghuo
    McGrath, Brendan
    Sokolowski, Peter
    IECON 2021 - 47TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2021,
  • [33] A novel efficient optimization algorithm for parameter estimation of building thermal dynamic models
    Wang, Jiangyu
    Chen, Huanxin
    Yuan, Yue
    Huang, Yao
    BUILDING AND ENVIRONMENT, 2019, 153 : 233 - 240
  • [34] An efficient near-optimal approach to incoherent scatter radar parameter estimation
    Nikoukar, Romina
    Kamalabadi, Farzad
    Kudeki, Erhan
    Sulzer, Michael
    RADIO SCIENCE, 2008, 43 (05)
  • [35] A novel approach for PEM fuel cell parameter estimation using LSHADE-EpSin optimization algorithm
    Fathy, Ahmed
    Abdel Aleem, Shady H. E.
    Rezk, Hegazy
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (05) : 6922 - 6942
  • [36] Parameter estimation of three diode solar PV cell using chaotic dragonfly algorithm
    Manish Kumar Singla
    Parag Nijhawan
    Amandeep Singh Oberoi
    Soft Computing, 2022, 26 : 11567 - 11598
  • [37] Parameter estimation of three diode solar PV cell using chaotic dragonfly algorithm
    Singla, Manish Kumar
    Nijhawan, Parag
    Oberoi, Amandeep Singh
    SOFT COMPUTING, 2022, 26 (21) : 11567 - 11598
  • [38] Parameter Estimation of Solar PV Using Ali Baba and Forty Thieves Optimization Technique
    Sharma, Pankaj
    Thangavel, Saravanakumar
    Raju, Saravanakumar
    Prusty, B. Rajanarayan
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [39] Parameter identification of PEMFC via feedforward neural network-pelican optimization algorithm
    Yang, Bo
    Liang, Boxiao
    Qian, Yucun
    Zheng, Ruyi
    Su, Shi
    Guo, Zhengxun
    Jiang, Lin
    APPLIED ENERGY, 2024, 361
  • [40] Parameter Estimation for the Phenomenological Model of Hysteresis Using Efficient Genetic Algorithm
    Xue Xiaomin
    Zhang Ling
    Sun Qing
    ISCM II AND EPMESC XII, PTS 1 AND 2, 2010, 1233 : 713 - +