CDTA: A Cross-Domain Transfer-Based Attack with Contrastive Learning

被引:0
|
作者
Li, Zihan [1 ]
Wu, Weibin [1 ]
Su, Yuxin [1 ]
Zheng, Zibin [1 ]
Lyu, Michael R. [2 ]
机构
[1] Sun Yat Sen Univ, Sch Software Engn, Guangzhou, Peoples R China
[2] Chinese Univ Hong Kong, Dept Comp Sci & Engn, Hong Kong, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Despite the excellent performance, deep neural networks (DNNs) have been shown to be vulnerable to adversarial examples. Besides, these examples are often transferable among different models. In other words, the same adversarial example can fool multiple models with different architectures at the same time. Based on this property, many black-box transfer-based attack techniques have been developed. However, current transfer-based attacks generally focus on the cross-architecture setting, where the attacker has access to the training data of the target model, which is not guaranteed in realistic situations. In this paper, we design a Cross-Domain Transfer-Based Attack (CDTA), which works in the cross-domain scenario. In this setting, attackers have no information about the target model, such as its architecture and training data. Specifically, we propose a contrastive spectral training method to train a feature extractor on a source domain (e.g., ImageNet) and use it to craft adversarial examples on target domains (e.g., Oxford 102 Flower). Our method corrupts the semantic information of the benign image by scrambling the outputs of both the intermediate feature layers and the final layer of the feature extractor. We evaluate CDTA with 16 target deep models on four datasets with widely varying styles. The results confirm that, in terms of the attack success rate, our approach can consistently outperform the state-of-the-art baselines by an average of 11.45% across all target models. Our code is available at https://github.com/LiulietLee/CDTA.
引用
收藏
页码:1530 / 1538
页数:9
相关论文
共 50 条
  • [21] Boosted Multifeature Learning for Cross-Domain Transfer
    Yang, Xiaoshan
    Zhang, Tianzhu
    Xu, Changsheng
    Yang, Ming-Hsuan
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2015, 11 (03)
  • [22] A Contrastive Learning Framework for Dual-Target Cross-Domain Recommendation
    Lu, Jinhu
    Sun, Guohao
    Fang, Xiu
    Yang, Jian
    He, Wei
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 6332 - 6339
  • [23] CROSS-DOMAIN SENTIMENT CLASSIFICATION WITH CONTRASTIVE LEARNING AND MUTUAL INFORMATION MAXIMIZATION
    Li, Tian
    Chen, Xiang
    Zhang, Shanghang
    Dong, Zhen
    Keutzer, Kurt
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 8203 - 8207
  • [24] Heterogeneous graph contrastive learning for cold start cross-domain recommendation
    Xie, Yuanzhen
    Yu, Chenyun
    Jin, Xinzhou
    Cheng, Lei
    Hu, Bo
    Li, Zang
    KNOWLEDGE-BASED SYSTEMS, 2024, 299
  • [25] Automatic Microsurgical Skill Assessment Based on Cross-Domain Transfer Learning
    Zhang, Dandan
    Wu, Zicong
    Chen, Junhong
    Gao, Anzhu
    Chen, Xu
    Li, Peichao
    Wang, Zhaoyang
    Yang, Guitao
    Lo, Benny
    Yang, Guang-Zhong
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (03): : 4148 - 4155
  • [26] Improved Transfer Learning Algorithm Based on Cross-domain in Recommendation System
    Zhang Z.
    Li M.
    Liang L.
    Zhang M.
    Xie X.
    Gu W.
    Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2020, 48 (11): : 99 - 106
  • [27] Federated Transfer Learning Based Cross-Domain Prediction for Smart Manufacturing
    Wang, Kevin I-Kai
    Zhou, Xiaokang
    Liang, Wei
    Yan, Zheng
    She, Jinhua
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (06) : 4088 - 4096
  • [28] Cross-Domain Expression Recognition Based on Sparse Coding and Transfer Learning
    Yang, Yong
    Zhang, Weiyi
    Huang, Yong
    MATERIALS SCIENCE, ENERGY TECHNOLOGY, AND POWER ENGINEERING I, 2017, 1839
  • [29] NaCL: noise-robust cross-domain contrastive learning for unsupervised domain adaptation
    Li, Jingzheng
    Sun, Hailong
    MACHINE LEARNING, 2023, 112 (09) : 3473 - 3496
  • [30] An improved cross-domain sequential recommendation model based on intra-domain and inter-domain contrastive learning
    Ni, Jianjun
    Shen, Tong
    Zhao, Yonghao
    Tang, Guangyi
    Gu, Yang
    COMPLEX & INTELLIGENT SYSTEMS, 2024, 10 (06) : 7877 - 7892