A shallow-based neural network model for fake news detection in social networks

被引:1
|
作者
Ramya, S. P. [1 ]
Eswari, R. [1 ]
机构
[1] Natl Inst Technol Tiruchirappalli, Dept Comp Applicat, Tiruchirappalli, Tamil Nadu, India
关键词
attention mechanism; deep learning; optimisation; natural language processing; NLP; convolution neural networks; CNN;
D O I
10.1504/IJICS.2023.132727
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The convenience of connecting through the internet and eagerness to spread any news through online social media is very intriguing as it can be done rapidly and with very little effort. This permits the very quick spread of fake news globally and misleads the people against democracy and freedom. The content of fake news very closely resembles true news. So, technically, it is tough for a deep neural network to 'detect and attend to' the 'fake only' aspects of a news article. Fake news detection is a significantly complex and challenging task from the aspect of deep learning-based attention mechanisms. The deep learning-based fake news detection systems suffer from indistinguishability of fake and real news/data, the curse of high dimensionality, the high training time of deep neural networks, the over-fitting of the network training, and the over-thinking problem. In this paper, a shallow-based convolution neural networks (SCNN) model has been proposed for the fake news detection system to overcome the mentioned issues. The proposed SCNN model is experimentally tested for a complex benchmark LIAR dataset. The performance of the proposed SCNN is better than other existing models in terms of accuracy, precision, recall and F1-score.
引用
收藏
页码:360 / 382
页数:24
相关论文
共 50 条
  • [21] Sentiment Analysis for Fake News Detection by Means of Neural Networks
    Kula, Sebastian
    Choras, Michal
    Kozik, Rafal
    Ksieniewicz, Pawel
    Wozniak, Michal
    COMPUTATIONAL SCIENCE - ICCS 2020, PT IV, 2020, 12140 : 653 - 666
  • [22] Convolutional neural network with margin loss for fake news detection
    Goldani, Mohammad Hadi
    Safabakhsh, Reza
    Momtazi, Saeedeh
    INFORMATION PROCESSING & MANAGEMENT, 2021, 58 (01)
  • [23] A Comparative Analysis of Graph Neural Networks for Fake News Detection
    Harby, Ahmed A.
    Zutkernine, Farhana
    2023 IEEE 47TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE, COMPSAC, 2023, : 1215 - 1222
  • [24] FAGON: Fake News Detection Model Using Grammatical Transformation on Deep Neural Network
    Seo, Youngkyung
    Han, Seong-Soo
    Jeon, You-Boo
    Jeong, Chang-Sung
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2019, 13 (10): : 4958 - 4970
  • [25] Evaluating the Network Performance of the Ensembled-Based Veracity Architecture for Fake News Detection in Infrastructureless Social Networks
    Ramkissoon, Amit Neil
    Goodridge, Wayne
    REVIEW OF SOCIONETWORK STRATEGIES, 2024, 18 (02): : 231 - 254
  • [26] Temporally evolving graph neural network for fake news detection
    Song, Chenguang
    Shu, Kai
    Wu, Bin
    INFORMATION PROCESSING & MANAGEMENT, 2021, 58 (06)
  • [27] FNDNet - A deep convolutional neural network for fake news detection
    Kaliyar, Rohit Kumar
    Goswami, Anurag
    Narang, Pratik
    Sinha, Soumendu
    COGNITIVE SYSTEMS RESEARCH, 2020, 61 : 32 - 44
  • [28] Dynamic graph neural network for fake news detection q
    Song, Chenguang
    Teng, Yiyang
    Zhu, Yangfu
    Wei, Siqi
    Wu, Bin
    NEUROCOMPUTING, 2022, 505 : 362 - 374
  • [29] Fake news detection: A survey of graph neural network methods
    Phan, Huyen Trang
    Nguyen, Ngoc Thanh
    Hwang, Dosam
    APPLIED SOFT COMPUTING, 2023, 139
  • [30] TCGNN: Text-Clustering Graph Neural Networks for Fake News Detection on Social Media
    Li, Pei-Cheng
    Li, Cheng-Te
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PT VI, PAKDD 2024, 2024, 14650 : 134 - 146