Evaluating Self-Supervised Learning for Molecular Graph Embeddings

被引:0
|
作者
Wang, Hanchen
Kaddour, Jean [1 ]
Liu, Shengchao [2 ,3 ]
Tang, Jian [2 ,4 ,5 ]
Lasenby, Joan
Liu, Qi [6 ]
机构
[1] UCL, London, England
[2] MILA, Montreal, PQ, Canada
[3] UdeM, Montreal, PQ, Canada
[4] HEC, Montreal, PQ, Canada
[5] CIFAR, Toronto, ON, Canada
[6] HKU, Hong Kong, Peoples R China
关键词
MEDICINAL CHEMISTRY; DRUG;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graph Self-Supervised Learning (GSSL) provides a robust pathway for acquiring embeddings without expert labelling, a capability that carries profound implications for molecular graphs due to the staggering number of potential molecules and the high cost of obtaining labels. However, GSSL methods are designed not for optimisation within a specific domain but rather for transferability across a variety of downstream tasks. This broad applicability complicates their evaluation. Addressing this challenge, we present "Molecular Graph Representation Evaluation" (MOLGRAPHEVAL), generating detailed profiles of molecular graph embeddings with interpretable and diversified attributes. MOLGRAPHEVAL offers a suite of probing tasks grouped into three categories: (i) generic graph, (ii) molecular substructure, and (iii) embedding space properties. By leveraging MOLGRAPHEVAL to benchmark existing GSSL methods against both current downstream datasets and our suite of tasks, we uncover significant inconsistencies between inferences drawn solely from existing datasets and those derived from more nuanced probing. These findings suggest that current evaluation methodologies fail to capture the entirety of the landscape.
引用
收藏
页数:33
相关论文
共 50 条
  • [21] Self-Supervised Contrastive Molecular Representation Learning with a Chemical Synthesis Knowledge Graph
    Xie, Jiancong
    Wang, Yi
    Rao, Jiahua
    Zheng, Shuangjia
    Yang, Yuedong
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2024, 64 (06) : 1945 - 1954
  • [22] Motif-based Graph Self-Supervised Learning for Molecular Property Prediction
    Zhang, Zaixi
    Liu, Qi
    Wang, Hao
    Lu, Chengqiang
    Lee, Chee-Kong
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [23] Self-supervised Consensus Representation Learning for Attributed Graph
    Liu, Changshu
    Wen, Liangjian
    Kang, Zhao
    Luo, Guangchun
    Tian, Ling
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 2654 - 2662
  • [24] Graph Multihead Attention Pooling with Self-Supervised Learning
    Wang, Yu
    Hu, Liang
    Wu, Yang
    Gao, Wanfu
    ENTROPY, 2022, 24 (12)
  • [25] Self-supervised graph representations with generative adversarial learning
    Sun, Xuecheng
    Wang, Zonghui
    Lu, Zheming
    Lu, Ziqian
    NEUROCOMPUTING, 2024, 592
  • [26] Self-supervised Graph Representation Learning with Variational Inference
    Liao, Zihan
    Liang, Wenxin
    Liu, Han
    Mu, Jie
    Zhang, Xianchao
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2021, PT III, 2021, 12714 : 116 - 127
  • [27] Self-supervised graph representation learning via bootstrapping
    Che, Feihu
    Yang, Guohua
    Zhang, Dawei
    Tao, Jianhua
    Liu, Tong
    NEUROCOMPUTING, 2021, 456 (456) : 88 - 96
  • [28] Self-supervised role learning for graph neural networks
    Aravind Sankar
    Junting Wang
    Adit Krishnan
    Hari Sundaram
    Knowledge and Information Systems, 2022, 64 : 2091 - 2121
  • [29] Self-supervised graph learning for occasional group recommendation
    Hao, Bowen
    Yin, Hongzhi
    Li, Cuiping
    Chen, Hong
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2022, 37 (12) : 10880 - 10902
  • [30] Self-supervised role learning for graph neural networks
    Sankar, Aravind
    Wang, Junting
    Krishnan, Adit
    Sundaram, Hari
    KNOWLEDGE AND INFORMATION SYSTEMS, 2022, 64 (08) : 2091 - 2121