Uncertainty Aware Semi-Supervised Learning on Graph Data

被引:0
|
作者
Zhao, Xujiang [1 ]
Chen, Feng [1 ]
Hu, Shu [2 ]
Cho, Jin-Hee [3 ]
机构
[1] Univ Texas Dallas, Richardson, TX 75083 USA
[2] SUNY Buffalo, Buffalo, NY USA
[3] Virginia Tech, Blacksburg, VA USA
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Thanks to graph neural networks (GNNs), semi-supervised node classification has shown the state-of-the-art performance in graph data. However, GNNs have not considered different types of uncertainties associated with class probabilities to minimize risk of increasing misclassification under uncertainty in real life. In this work, we propose a multi-source uncertainty framework using a GNN that reflects various types of predictive uncertainties in both deep learning and belief/evidence theory domains for node classification predictions. By collecting evidence from the given labels of training nodes, the Graph-based Kernel Dirichlet distribution Estimation (GKDE) method is designed for accurately predicting node-level Dirichlet distributions and detecting out-of-distribution (OOD) nodes. We validated the outperformance of our proposed model compared to the state-of-the-art counterparts in terms of misclassification detection and OOD detection based on six real network datasets. We found that dissonance-based detection yielded the best results on misclassification detection while vacuity-based detection was the best for OOD detection. To clarify the reasons behind the results, we provided the theoretical proof that explains the relationships between different types of uncertainties considered in this work.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Simulation Analysis of Distance-aware Graph-based Semi-supervised Learning
    Fan, Yanyun
    Ma, Lin
    Xu, Yubin
    Cui, Yang
    PROCEEDINGS OF 2015 IEEE 5TH INTERNATIONAL CONFERENCE ON ELECTRONICS INFORMATION AND EMERGENCY COMMUNICATION, 2015, : 55 - 58
  • [32] Link prediction in graph construction for supervised and semi-supervised learning
    Berton, Lilian
    Valverde-Rebaza, Jorge
    Lopes, Alneu de Andrade
    2015 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2015,
  • [33] Hierarchical deep network with uncertainty-aware semi-supervised learning for vessel segmentation
    Chenxin Li
    Wenao Ma
    Liyan Sun
    Xinghao Ding
    Yue Huang
    Guisheng Wang
    Yizhou Yu
    Neural Computing and Applications, 2022, 34 : 3151 - 3164
  • [34] Hierarchical deep network with uncertainty-aware semi-supervised learning for vessel segmentation
    Li, Chenxin
    Ma, Wenao
    Sun, Liyan
    Ding, Xinghao
    Huang, Yue
    Wang, Guisheng
    Yu, Yizhou
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (04): : 3151 - 3164
  • [35] SemiGraphFL: Semi-supervised Graph Federated Learning for Graph Classification
    Tao, Ye
    Li, Ying
    Wu, Zhonghai
    PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XVII, PPSN 2022, PT I, 2022, 13398 : 474 - 487
  • [36] Spatial Uncertainty-Aware Semi-Supervised Crowd Counting
    Meng, Yanda
    Zhang, Hongrun
    Zhao, Yitian
    Yang, Xiaoyun
    Qian, Xuesheng
    Huang, Xiaowei
    Zheng, Yalin
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 15529 - 15539
  • [37] Anatomically-aware uncertainty for semi-supervised image segmentation
    Adiga, V. Sukesh
    Dolz, Jose
    Lombaert, Herve
    MEDICAL IMAGE ANALYSIS, 2024, 91
  • [38] Uncertainty-aware semi-supervised few shot segmentation
    Kim, Soopil
    Chikontwe, Philip
    An, Sion
    Park, Sang Hyun
    PATTERN RECOGNITION, 2023, 137
  • [39] Data driven semi-supervised learning
    Balcan, Maria-Florina
    Sharma, Dravyansh
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [40] Learning sample-aware threshold for semi-supervised learning
    Wei, Qi
    Feng, Lei
    Sun, Haoliang
    Wang, Ren
    He, Rundong
    Yin, Yilong
    MACHINE LEARNING, 2024, 113 (08) : 5423 - 5445