Reliable Neuro-Symbolic Abstractions for Planning and Learning

被引:0
|
作者
Shah, Naman [1 ]
机构
[1] Arizona State Univ, Tempe, AZ 85287 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Although state-of-the-art hierarchical robot planning algorithms allow robots to efficiently compute long-horizon motion plans for achieving user desired tasks, these methods typically rely upon environment-dependent state and action abstractions that need to be hand-designed by experts. On the other hand, non-hierarchical robot planning approaches fail to compute solutions for complex tasks that require reasoning over a long horizon. My research addresses these problems by proposing an approach for learning abstractions and developing hierarchical planners that efficiently use learned abstractions to boost robot planning performance and provide strong guarantees of reliability.
引用
收藏
页码:7093 / 7094
页数:2
相关论文
共 50 条
  • [41] Neuro-Symbolic Models for Sentiment Analysis
    Kocon, Jan
    Baran, Joanna
    Gruza, Marcin
    Janz, Arkadiusz
    Kajstura, Michal
    Kazienko, Przemyslaw
    Korczynski, Wojciech
    Milkowski, Piotr
    Piasecki, Maciej
    Szolomicka, Joanna
    COMPUTATIONAL SCIENCE, ICCS 2022, PT II, 2022, : 667 - 681
  • [42] Neuro-Symbolic AI for Military Applications
    Hagos, Desta Haileselassie
    Rawat, Danda B.
    IEEE Transactions on Artificial Intelligence, 2024, 5 (12): : 6012 - 6026
  • [43] One Possibility of a Neuro-Symbolic Integration
    Samsonovich, Alexei, V
    BIOLOGICALLY INSPIRED COGNITIVE ARCHITECTURES 2021, 2022, 1032 : 428 - 437
  • [44] Neuro-Symbolic Representations for Information Retrieval
    Dietz, Laura
    Bast, Hannah
    Chatterjee, Shubham
    Dalton, Jeff
    Nie, Jian-Yun
    Nogueira, Rodrigo
    PROCEEDINGS OF THE 46TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2023, 2023, : 3436 - 3439
  • [45] Neuro-symbolic approaches in artificial intelligence
    Hitzler, Pascal
    Eberhart, Aaron
    Ebrahimi, Monireh
    Sarker, Md Kamruzzaman
    Zhou, Lu
    NATIONAL SCIENCE REVIEW, 2022, 9 (06)
  • [46] Neuro-symbolic approaches in artificial intelligence
    Pascal Hitzler
    Aaron Eberhart
    Monireh Ebrahimi
    Md Kamruzzaman Sarker
    Lu Zhou
    National Science Review, 2022, 9 (06) : 35 - 37
  • [47] Towards Neuro-Symbolic Video Understanding
    Choi, Minkyu
    Goel, Harsh
    Omama, Mohammad
    Yang, Yunhao
    Shah, Sahil
    Chinchali, Sandeep
    COMPUTER VISION - ECCV 2024, PT LXXVIII, 2025, 15136 : 220 - 236
  • [48] Reduced implication-bias logic loss for neuro-symbolic learning
    Hao-Yuan He
    Wang-Zhou Dai
    Ming Li
    Machine Learning, 2024, 113 : 3357 - 3377
  • [49] Detect, Understand, Act: A Neuro-symbolic Hierarchical Reinforcement Learning Framework
    Ludovico Mitchener
    David Tuckey
    Matthew Crosby
    Alessandra Russo
    Machine Learning, 2022, 111 : 1523 - 1549
  • [50] Neuro-Symbolic Learning of Answer Set Programs from Raw Data
    Cunnington, Daniel
    Law, Mark
    Lobo, Jorge
    Russo, Alessandra
    PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 3586 - 3596