K -Convergence of Finite Volume Solutions of the Euler Equations

被引:0
|
作者
Lukacova-Medvid'ova, Maria [1 ]
机构
[1] Johannes Gutenberg Univ Mainz, Inst Math, Staudingerweg 9, D-55128 Mainz, Germany
关键词
Convergence analysis; Finite volume methods; Euler equations; Ill-posedness; Dissipative measure-valued solutions; K; -convergence; MEASURE-VALUED SOLUTIONS; SYSTEMS;
D O I
10.1007/978-3-030-43651-3_2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We review our recent results on the convergence of invariant domain-preserving finite volume solutions to the Euler equations of gas dynamics. If the classical solution exists we obtain strong convergence of numerical solutions to the classical one applying the weak-strong uniqueness principle. On the other hand, if the classical solution does not existwe adapt thewell-known Prokhorov compactness theorem to space-time probability measures that are generated by the sequences of finite volume solutions and show how to obtain the strong convergence in space and time of observable quantities. This can be achieved even in the case of ill-posed Euler equations having possibly many oscillatory solutions.
引用
收藏
页码:25 / 37
页数:13
相关论文
共 50 条
  • [31] An Adaptive Mesh Finite Volume Method for the Euler Equations of Gas Dynamics
    Mungkasi, Sudi
    PROCEEDINGS OF THE 3RD AUN/SEED-NET REGIONAL CONFERENCE ON ENERGY ENGINEERING AND THE 7TH INTERNATIONAL CONFERENCE ON THERMOFLUIDS (RCENE/THERMOFLUID 2015), 2016, 1737
  • [32] Modified Finite Volume Nodal Scheme for Euler Equations with Gravity and Friction
    Franck, Emmanuel
    FINITE VOLUMES FOR COMPLEX APPLICATIONS VII - METHODS AND THEORETICAL ASPECTS, 2014, 77 : 285 - 292
  • [33] An adaptive finite volume solver for steady Euler equations with non-oscillatory k-exact reconstruction
    Hu, Guanghui
    Yi, Nianyu
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 312 : 235 - 251
  • [34] A NURBS-enhanced finite volume solver for steady Euler equations
    Meng, Xucheng
    Hu, Guanghui
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 359 : 77 - 92
  • [35] A convergent finite volume scheme for the stochastic barotropic compressible Euler equations
    Chaudhary, Abhishek
    Koley, Ujjwal
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2023, 57 (06) : 3403 - 3437
  • [36] Finite volume evolution Galerkin methods for Euler equations of gas dynamics
    Lukácová-Medvid'ová, M
    Morton, KW
    Warnecke, G
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2002, 40 (3-4) : 425 - 434
  • [37] Computing oscillatory solutions of the Euler system via K-convergence
    Feireisl, Eduard
    Lukacova-Medvid'ova, Maria
    She, Bangwei
    Wang, Yue
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2021, 31 (03): : 537 - 576
  • [38] Convergence of compressible Euler-Maxwell equations to incompressible euler equations
    Peng, Yue-Jun
    Wang, Shu
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2008, 33 (03) : 349 - 376
  • [39] Convergence of a finite volume scheme for nonlinear degenerate parabolic equations
    Robert Eymard
    Thierry Gallouït
    Raphaèle Herbin
    Anthony Michel
    Numerische Mathematik, 2002, 92 : 41 - 82
  • [40] Convergence of a finite volume scheme for coagulation-fragmentation equations
    Bourgade, Jean-Pierre
    Filbet, Francis
    MATHEMATICS OF COMPUTATION, 2008, 77 (262) : 851 - 882