Network Traffic Visualization Coupled With Convolutional Neural Networks for Enhanced IoT Botnet Detection

被引:2
|
作者
Arnold, David [1 ]
Gromov, Mikhail [1 ]
Saniie, Jafar [1 ]
机构
[1] IIT, Dept Elect & Comp Engn, Chicago, IL 60616 USA
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Botnet; cybersecurity; convolutional neural network; intrusion detection systems; INDUSTRIAL INTERNET; ANOMALY DETECTION; ATTACKS; CHALLENGES;
D O I
10.1109/ACCESS.2024.3404270
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Systemic vulnerabilities in the Internet of Things (IoT) pose a challenge for establishing robust cybersecurity strategies. These challenges leave IoT devices susceptible to infection, often falling victim to far-reaching Botnets. To counter these risks, Intrusion Detection Systems (IDS) are designed to detect attacks within the network, mitigating the dangers presented by architecturally vulnerable IoT devices. However, IDS solutions are designed to operate at the center of the network, requiring network traffic to be forwarded inwards and consequently hampers reaction times while straining network resources. This paper introduces an IoT Botnet detection pipeline composed of a novel network traffic visualization methodology and a Convolutional Neural Network (CNN). The pipeline operates on an embedded system at the edge of the network, transforming network traffic into a visual format for subsequent cyberattack classification by the CNN. By leveraging the advantages of CNNs in efficiently classifying images, the pipeline achieves high accuracy in detecting Botnet attacks while maintaining an efficient design. During testing, we applied the pipeline to the N-BaIoT and IoT-23 datasets and observed high cyberattack detection rates of 100% and 99.78%, respectively. Furthermore, we observed a 2.4 times greater throughput (packets/second) and a 21.4% reduction in model size compared to a Deep Neural Network of similar accuracy.
引用
收藏
页码:73547 / 73560
页数:14
相关论文
共 50 条
  • [41] Enhanced Machine Learning Based Network Traffic Detection Model for IoT Network
    Alzyoud, Mazen
    Al-Shanableh, Najah
    Nashnush, Eman
    Shboul, Rabah
    Alazaidah, Raed
    Samara, Ghassan
    Alhusban, Safaa
    International Journal of Interactive Mobile Technologies, 2024, 18 (19) : 182 - 198
  • [42] Enhanced Adaptive Hybrid Convolutional Transformer Network for Malware Detection in IoT
    Almazroi, Abdulaleem Ali
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (11) : 1250 - 1263
  • [43] An Intrusion Detection System Based on Convolutional Neural Network for Imbalanced Network Traffic
    Zhang, Xiaoxuan
    Ran, Jing
    Mi, Jize
    PROCEEDINGS OF 2019 IEEE 7TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT 2019), 2019, : 456 - 460
  • [44] Modular neural network for edge-based detection of early-stage IoT botnet
    Alqattan, Duaa
    Ojha, Varun
    Habib, Fawzy
    Noor, Ayman
    Morgan, Graham
    Ranjan, Rajiv
    HIGH-CONFIDENCE COMPUTING, 2025, 5 (01):
  • [45] Botnet Detection Based on Genetic Neural Network
    Yin, Chunyong
    Awlla, Ardalan Husin
    Yin, Zhichao
    Wang, Jin
    INTERNATIONAL JOURNAL OF SECURITY AND ITS APPLICATIONS, 2015, 9 (11): : 97 - 104
  • [46] Network Prediction with Traffic Gradient Classification using Convolutional Neural Networks
    Ko, Taejin
    Raza, Syed M.
    Dang Thien Binh
    Kim, Moonseong
    Choo, Hyunseung
    PROCEEDINGS OF THE 2020 14TH INTERNATIONAL CONFERENCE ON UBIQUITOUS INFORMATION MANAGEMENT AND COMMUNICATION (IMCOM), 2020,
  • [47] Network Traffic Prediction based on Diffusion Convolutional Recurrent Neural Networks
    Andreoletti, Davide
    Troia, Sebastian
    Musumeci, Francesco
    Giordano, Silvia
    Maier, Guido
    Tornatore, Massimo
    IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS (IEEE INFOCOM 2019 WKSHPS), 2019, : 246 - 251
  • [48] Optical Network Traffic Prediction Based on Graph Convolutional Neural Networks
    Gui, Yihan
    Wang, Danshi
    Guan, Luyao
    Zhang, Min
    2020 OPTO-ELECTRONICS AND COMMUNICATIONS CONFERENCE (OECC 2020), 2020,
  • [49] Network Traffic Classifier With Convolutional and Recurrent Neural Networks for Internet of Things
    Lopez-Martin, Manuel
    Carro, Belen
    Sanchez-Esguevillas, Antonio
    Lloret, Jaime
    IEEE ACCESS, 2017, 5 : 18042 - 18050
  • [50] A network traffic classification and anomaly detection method based on parallel cross-convolutional neural networks
    Zou, Bailin
    Liu, Tianhang
    International Journal of Security and Networks, 2024, 19 (02) : 92 - 100