Bayesian Hierarchical Sparse Autoencoder for Massive MIMO CSI Feedback

被引:0
|
作者
Guo, Huayan [1 ]
Lau, Vincent K. N. [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Elect & Comp Engn, Kowloon, Hong Kong 999077, Peoples R China
基金
中国国家自然科学基金;
关键词
Adaptation models; Quantization (signal); Training; Bayes methods; Dimensionality reduction; Decoding; Rate-distortion; Massive MIMO; deep learning; CSI feedback; variational autoencoder; CHANNEL ESTIMATION; LIMITED FEEDBACK; COMPRESSION; DESIGN; PILOT; MODEL;
D O I
10.1109/TSP.2024.3423660
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Efficient channel state information (CSI) compression and feedback from user equipment to the base station (BS) are crucial for achieving the promised capacity gains in massive multiple-input multiple-output (MIMO) systems. Deep autoencoder (AE)-based schemes have been proposed to improve the efficiency of CSI compression and feedback. However, existing AE-based schemes suffer from critical issues in both CSI dimensionality reduction and latent feature quantization. In this paper, we propose a novel hierarchical sparse AE for efficient CSI compression and feedback for the 5G-NR fixed-length CSI feedback mechanism. Our approach employs a two-tier AE structure to jointly compress the sparse CSI latent feature and its side information. Additionally, we utilize a model-assisted Bayesian Rate-Distortion approach to train the weights of the AE. Specifically, the training loss function is formulated based on the variational Bayesian inference framework given a parametric Bernoulli Laplace Mixture prior model and a sparsity-inducing likelihood model. Furthermore, we propose a model-assisted adaptive coding algorithm to quantize the latent feature under the fixed codeword bit length constraint. Our experimental results demonstrate that the proposed solution outperforms existing AE-based schemes under various feedback budgets.
引用
收藏
页码:3213 / 3227
页数:15
相关论文
共 50 条
  • [41] Probability Distribution-Based CSI Feedback for Massive MIMO Systems
    Jang, Youngrok
    Kim, Taehyoung
    Choi, Sooyong
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (05) : 6833 - 6838
  • [42] Lightweight neural network based SNIP for CSI feedback in massive MIMO
    Cui, Yue
    Liu, Hongfu
    Xu, Fangmin
    Li, Bin
    Zhao, Chenglin
    ELECTRONICS LETTERS, 2023, 59 (19)
  • [43] Accelerating and Compressing Deep Neural Networks for Massive MIMO CSI Feedback
    Erak, Omar
    Abou-Zeid, Hatem
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 1029 - 1035
  • [44] A Lightweight Deep Network for Efficient CSI Feedback in Massive MIMO Systems
    Sun, Yuyao
    Xu, Wei
    Liang, Le
    Wang, Ning
    Li, Geoffery Ye
    You, Xiaohu
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2021, 10 (08) : 1840 - 1844
  • [45] Dilated Convolution Based CSI Feedback Compression for Massive MIMO Systems
    Tang, Shunpu
    Xia, Junjuan
    Fan, Lisheng
    Lei, Xianfu
    Xu, Wei
    Nallanathan, Arumugam
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (10) : 11216 - 11221
  • [46] Manifold Learning-Based CSI Feedback in Massive MIMO Systems
    Cao, Yandi
    Yin, Haifan
    He, Gaoning
    Debbah, Merouane
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 225 - 230
  • [47] Binary Neural Network Aided CSI Feedback in Massive MIMO System
    Lu, Zhilin
    Wang, Jintao
    Song, Jian
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2021, 10 (06) : 1305 - 1308
  • [48] Bidirectional position attention lightweight network for massive MIMO CSI feedback
    Li Jun
    Wang Yukai
    Zhang Zhichen
    He Bo
    Zheng Wenjing
    Lin Fei
    The Journal of China Universities of Posts and Telecommunications, 2024, 31 (05) : 1 - 11
  • [49] Aligning DL Paths for Scalable CSI Feedback in FDD Massive MIMO
    Luo, Xiliang
    Cai, Penghao
    Zhang, Xiaoyu
    Shen, Cong
    Qian, Hua
    2017 13TH INTERNATIONAL WIRELESS COMMUNICATIONS AND MOBILE COMPUTING CONFERENCE (IWCMC), 2017, : 587 - 592
  • [50] Sparse Bayesian Learning for the Channel Statistics of the Massive MIMO Systems
    Ma, Jianpeng
    Li, Hongyan
    Zhang, Shun
    Gao, Feifei
    GLOBECOM 2017 - 2017 IEEE GLOBAL COMMUNICATIONS CONFERENCE, 2017,