Safe non-smooth black-box optimization with application to policy search

被引:0
|
作者
Usmanova, Ilnura [1 ]
Krause, Andreas [2 ]
Kamgarpour, Maryam [1 ]
机构
[1] Swiss Fed Inst Technol, Automat Control Lab, Zurich, Switzerland
[2] Swiss Fed Inst Technol, Machine Learning Inst, Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
For safety-critical black- box optimization tasks, observations of the constraints and the objective are often noisy and available only for the feasible points. We propose an approach based on log barriers to find a local solution of a non-convex non-smooth black-box optimization problem min f (0)(x) subject to f(i)(x) (sic)0, i = 1,..., m, guaranteeing constraint satisfaction while learning an optimal solution with high probability. Our proposed algorithm exploits noisy observations to iteratively improve on an initial safe point until convergence. We derive the convergence rate and prove safety of our algorithm. We demonstrate its performance in an application to an iterative control design problem.
引用
收藏
页码:980 / 989
页数:10
相关论文
共 50 条
  • [31] Safe global optimization of expensive noisy black-box functions in the δ-Lipschitz framework
    Sergeyev, Yaroslav D.
    Candelieri, Antonio
    Kvasov, Dmitri E.
    Perego, Riccardo
    SOFT COMPUTING, 2020, 24 (23) : 17715 - 17735
  • [32] SPSA for non-smooth optimization with application in ECG analysis
    Gerencsér, L
    Kozmann, G
    Vágó, Z
    PROCEEDINGS OF THE 37TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 1998, : 3907 - 3908
  • [33] SANE: strategic autonomous non-smooth exploration for multiple optima discovery in multi-modal and non-differentiable black-box functions
    Biswas, Arpan
    Vasudevan, Rama
    Pant, Rohit
    Takeuchi, Ichiro
    Funakubo, Hiroshi
    Liu, Yongtao
    DIGITAL DISCOVERY, 2025, 4 (03): : 853 - 867
  • [34] DiBB: Distributing Black-Box Optimization
    Cuccu, Giuseppe
    Rolshoven, Luca
    Vorpe, Fabien
    Cudre-Mauroux, Philippe
    Glasmachers, Tobias
    PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'22), 2022, : 341 - 349
  • [35] Black-Box Optimization for Automated Discovery
    Terayama, Kei
    Sumita, Masato
    Tamura, Ryo
    Tsuda, Koji
    ACCOUNTS OF CHEMICAL RESEARCH, 2021, 54 (06) : 1334 - 1346
  • [36] Black-Box Optimization in a Configuration System
    Kucher, Maximilian
    Balyo, Tomas
    Christensen, Noemi
    26TH ACM INTERNATIONAL SYSTEMS AND SOFTWARE PRODUCT LINE CONFERENCE, SPLC 2022, VOL B, 2022, : 229 - 236
  • [37] A model for analyzing black-box optimization
    Phan, Vinhthuy
    Skiena, Steven
    Sumazin, Pavel
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2003, 2748 : 424 - 438
  • [38] A model for analyzing black-box optimization
    Phan, V
    Skiena, S
    Sumazin, P
    ALGORITHMS AND DATA STRUCTURES, PROCEEDINGS, 2003, 2748 : 424 - 438
  • [39] Black-Box Non-Black-Box Zero Knowledge
    Goyal, Vipul
    Ostrovsky, Rafail
    Scafuro, Alessandra
    Visconti, Ivan
    STOC'14: PROCEEDINGS OF THE 46TH ANNUAL 2014 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2014, : 515 - 524
  • [40] Discovering Representations for Black-box Optimization
    Gaier, Adam
    Asteroth, Alexander
    Mouret, Jean-Baptiste
    GECCO'20: PROCEEDINGS OF THE 2020 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2020, : 103 - 111