Safe non-smooth black-box optimization with application to policy search

被引:0
|
作者
Usmanova, Ilnura [1 ]
Krause, Andreas [2 ]
Kamgarpour, Maryam [1 ]
机构
[1] Swiss Fed Inst Technol, Automat Control Lab, Zurich, Switzerland
[2] Swiss Fed Inst Technol, Machine Learning Inst, Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
For safety-critical black- box optimization tasks, observations of the constraints and the objective are often noisy and available only for the feasible points. We propose an approach based on log barriers to find a local solution of a non-convex non-smooth black-box optimization problem min f (0)(x) subject to f(i)(x) (sic)0, i = 1,..., m, guaranteeing constraint satisfaction while learning an optimal solution with high probability. Our proposed algorithm exploits noisy observations to iteratively improve on an initial safe point until convergence. We derive the convergence rate and prove safety of our algorithm. We demonstrate its performance in an application to an iterative control design problem.
引用
收藏
页码:980 / 989
页数:10
相关论文
共 50 条
  • [1] The Power of First-Order Smooth Optimization for Black-Box Non-Smooth Problems
    Gasnikov, Alexander
    Novitskii, Anton
    Novitskii, Vasilii
    Abdukhakimov, Farshed
    Kamzolov, Dmitry
    Beznosikov, Aleksandr
    Takac, Martin
    Dvurechensky, Pavel
    Gu, Bin
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [2] A Novel Hybrid Direct Search Method for Constrained Non-Smooth Black-Box Problems
    Martelli, Emanuele
    Amaldi, Edoardo
    23 EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, 2013, 32 : 295 - 300
  • [3] Log Barriers for Safe Black-box Optimization with Application to Safe Reinforcement Learning
    Usmanova, Ilnura
    As, Yarden
    Kamgarpour, Maryam
    Krause, Andreas
    JOURNAL OF MACHINE LEARNING RESEARCH, 2024, 25
  • [4] Black-Box Policy Search with Probabilistic Programs
    van de Meent, Jan-Willem
    Paige, Brooks
    Tolpin, David
    Wood, Frank
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 51, 2016, 51 : 1195 - 1204
  • [5] ROCK☆ - Efficient Black-box Optimization for Policy Learning
    Hwangbo, Jemin
    Gehring, Christian
    Sommer, Hannes
    Siegwart, Roland
    Buchli, Jonas
    2014 14TH IEEE-RAS INTERNATIONAL CONFERENCE ON HUMANOID ROBOTS (HUMANOIDS), 2014, : 535 - 540
  • [6] Policy Learning with an Effcient Black-Box Optimization Algorithm
    Hwangbo, Jemin
    Gehring, Christian
    Sommer, Hannes
    Siegwart, Roland
    Buchli, Jonas
    INTERNATIONAL JOURNAL OF HUMANOID ROBOTICS, 2015, 12 (03)
  • [7] Black-Box Data-efficient Policy Search for Robotics
    Chatzilygeroudis, Konstantinos
    Rama, Roberto
    Kaushik, Rituraj
    Goepp, Dorian
    Vassiliades, Vassilis
    Mouret, Jean-Baptiste
    2017 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2017, : 51 - 58
  • [8] Extensive antibody search with whole spectrum black-box optimization
    Andrejs Tučs
    Tomoyuki Ito
    Yoichi Kurumida
    Sakiya Kawada
    Hikaru Nakazawa
    Yutaka Saito
    Mitsuo Umetsu
    Koji Tsuda
    Scientific Reports, 14
  • [9] Optimistic tree search strategies for black-box combinatorial optimization
    Malherbe, Cedric
    Grosnit, Antoine
    Tutunov, Rasul
    Wang, Jun
    Bou-Ammar, Haitham
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [10] A black-box scatter search for optimization problems with integer variables
    Laguna, Manuel
    Gortazar, Francisco
    Gallego, Micael
    Duarte, Abraham
    Marti, Rafael
    JOURNAL OF GLOBAL OPTIMIZATION, 2014, 58 (03) : 497 - 516