Technical note: Can photon-counting CT improve PET/CT's quantitative accuracy?

被引:1
|
作者
Hamill, James [1 ]
Birge, Noah [1 ]
O'Doherty, Jim [2 ,3 ]
Nye, Jonathon [4 ]
Elojeimy, Saeed [4 ]
机构
[1] Siemens Med Solut USA, 810 Innovat Dr Knoxville, Tennessee, IL 37923 USA
[2] Siemens Med Solut USA, CT R&D Collaborat, Malvern, PA USA
[3] Med Univ South Carolina, Dept Radiol & Radiol Sci, Charleston, SC USA
[4] Med Univ South Carolina, Dept Radiol & Radiol Sci, Dept Nucl Med, Charleston, SC USA
关键词
attenuation correction; PET; photon-counting CT; ATTENUATION CORRECTION; INTRAVENOUS CONTRAST;
D O I
10.1002/mp.17299
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
BackgroundLinear attenuation coefficients (LACs) in positron emission tomography combined with computed tomography (PET/CT) are derived from CT scans that utilize energy-integrating detectors (EID-CT). These LACs are inaccurate when iodine contrast has been injected. Photon counting detector CT (PCD-CT) may be able to improve the accuracy.PurposeTo investigate whether PCD-CT can improve PET/CT quantitative accuracy.MethodsTwo experiments were performed: one with CT only and one that combined PET and CT. The first experiment used an electron density phantom whose inserts were imaged with EID-CT and PCD-CT. The inserts simulated normal human tissues, including bone and iodinated blood. In the case of PCD-CT, virtual-monoenergetic images at 190 keV were created. LACs were derived in each case and compared against known values. For inserts with iodine, more accurate LACs were expected with PCD-CT. The second experiment involved a custom PET phantom with various materials simulating human tissues (blood, iodinated blood, and bone) and 18F radioactivity. Data were first acquired with an EID-CT-based PET/CT system and then separately in a PCD-CT system without PET. PET images were reconstructed using LAC from EID-CT and PCD-CT. PET image values were compared against known activity values using recovery coefficients (RC).ResultsIn the first experiment, LAC based on EID-CT were in error by as much as 18%, whereas the corresponding PCD-CT based measurements were within 3%. In the second experiment, minimum, maximum, and mean RC were (96.1%, 115.4%, and 103.8%) for the EID-CT method, and (95.8%, 105.5%, and 101.0%) for the PCD-CT method. The consistency of PET images in body and head orientations was improved.ConclusionsPCD-CT can acquire the information needed for accurate LAC for PET reconstruction in a single spiral acquisition.
引用
收藏
页码:7206 / 7213
页数:8
相关论文
共 50 条
  • [31] Clinical CT Applications with Photon-Counting Detectors
    Levinson, R.
    MEDICAL PHYSICS, 2009, 36 (06)
  • [32] Advanced Neuroimaging With Photon-Counting Detector CT
    Abel, Frederik
    Schubert, Tilman
    Winklhofer, Sebastian
    INVESTIGATIVE RADIOLOGY, 2023, 58 (07) : 472 - 481
  • [33] Bone Marrow Edema at Photon-Counting CT
    Surov, Alexey
    Niehoff, Julius Henning
    RADIOLOGY, 2024, 310 (02)
  • [34] Pediatric Applications of Photon-Counting Detector CT
    Cao, Joseph
    Bache, Steve
    Schwartz, Fides R.
    Frush, Donald
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2023, 220 (04) : 580 - 589
  • [35] Performance Characteristics of Photon-Counting Breast CT
    Kalender, W.
    MEDICAL PHYSICS, 2016, 43 (06) : 3829 - 3830
  • [36] Soft Reconstruction Kernels Improve HCC Imaging on a Photon-Counting Detector CT
    Graafen, D.
    Mueller, L.
    Halfmann, M. C.
    Stoehr, F.
    Foerster, F.
    Dueber, C.
    Yang, Y.
    Kloeckner, R.
    Emrich, T.
    ACADEMIC RADIOLOGY, 2023, 30 : S143 - S154
  • [37] Calibration methods influence quantitative material decomposition in photon-counting spectral CT
    Curtis, Tyler E.
    Roeder, Ryan K.
    MEDICAL IMAGING 2017: PHYSICS OF MEDICAL IMAGING, 2017, 10132
  • [38] The potential of photon-counting CT for quantitative contrast-enhanced imaging in radiotherapy
    Simard, Mikael
    Lapointe, Andreanne
    Lalonde, Arthur
    Bahig, Houda
    Bouchard, Hugo
    PHYSICS IN MEDICINE AND BIOLOGY, 2019, 64 (11):
  • [39] Overcoming a Technological Hurdle: Coronary CT Angiography with Photon-counting CT
    Sandfort, Veit
    Bluemke, David A.
    RADIOLOGY, 2022, 303 (02)
  • [40] The first mobile photon-counting detector CT: the human images and technical performance study
    Park, Su-Jin
    Park, Junyoung
    Kim, Doil
    Lee, Duhgoon
    Lee, Chang-Lae
    Bechwati, Ibrahim
    Wu, Dufan
    Gupta, Rajiv
    Jung, Jinwook
    PHYSICS IN MEDICINE AND BIOLOGY, 2023, 68 (09):