Classification of Dementia Detection Using Hybrid Neuro Multi-kernel SVM (NMKSVM)

被引:0
|
作者
Ambili, A., V [1 ]
Kumar, A. V. Senthil [1 ]
Saleh, Omar S. [2 ]
机构
[1] Hindusthan Coll Arts & Sci, PG Res & Comp Applicat, Coimbatore, India
[2] Minist Higher Educ & Sci Res, Planning & Follow Up Directorate, Baghdad, Iraq
关键词
Convolutional neural network; Dementia; Deep learning; Magnetic resonance image; SVM; DIAGNOSIS;
D O I
10.1007/978-981-99-8476-3_23
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep learning has played a vital role in the prediction of diseases in medical images. Early detection of disease will benefit people alive. However, it is a demanding task in neuroimaging. Convolutional neural network (CNN) works an essential role in predicting the early phases of dementia in the brain. There are seven phases in dementia. Early prognostication will aid to avert the gravity of the disease. Dementia is a chronic and continuing neurological issue. Dementia detection at the beginning can forestall the cerebrum (brain) harm to the patient. This research work recommends a hybrid neuro multi-kernel SVM (NMKSVM) approach. This able hybrid approach accomplishes the desired execution over conventional techniques such as SVM and CNN.
引用
收藏
页码:289 / 298
页数:10
相关论文
共 50 条
  • [41] Monocular Multi-Kernel Based Lane Marking Detection
    Lu, Wenjie
    Rodriguez, Sergio A. F.
    Seignez, Emmanuel
    Reynaud, Roger
    2014 IEEE 4TH ANNUAL INTERNATIONAL CONFERENCE ON CYBER TECHNOLOGY IN AUTOMATION, CONTROL, AND INTELLIGENT SYSTEMS (CYBER), 2014, : 123 - 128
  • [42] Robust Multi-Kernel Nearest Neighborhood for Outlier Detection
    Wang, Xinye
    Duan, Lei
    Yu, Zhenyang
    He, Chengxin
    Bao, Zhifeng
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (08) : 4220 - 4231
  • [43] Electronic system fault diagnosis with optimized multi-kernel SVM by improved CPSO
    Diagnoza uszkodzeń ukladu elektronicznego z wykorzystaniem wielojądrowej maszyny wektorów nośnych
    1600, Polish Academy of Sciences Branch Lublin (16):
  • [44] Active multi-kernel domain adaptation for hyperspectral image classification
    Deng, Cheng
    Liu, Xianglong
    Li, Chao
    Tao, Dacheng
    PATTERN RECOGNITION, 2018, 77 : 306 - 315
  • [45] Sequential Multi-Kernel Convolutional Recurrent Network for Sentiment Classification
    Oluwasanmi, Ariyo
    Akeem, Shokanbi
    Jehoaida, Jackson
    Aftab, Muhammad Umar
    Hundera, Negalign
    Kumeda, Bulbula
    Baagere, Edward
    Qin, Zhiguang
    PROCEEDINGS OF 2019 IEEE 10TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS 2019), 2019, : 129 - 133
  • [46] PHOTOVOLTAIC POWER PREDICTION ALGORITHM BASED ON PARAMETER OPTIMAZATION OF MULTI-KERNEL SVM
    He, Yichen
    Shi, Changli
    Guo, Xiaoqiang
    He, Wei
    Han, Tao
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2024, 45 (09): : 394 - 404
  • [47] ELECTRONIC SYSTEM FAULT DIAGNOSIS WITH OPTIMIZED MULTI-KERNEL SVM BY IMPROVED CPSO
    Guo, Yang-Ming
    Wang, Xiang-Tao
    Liu, Chong
    Zheng, Ya-Fei
    Cai, Xiao-Bin
    EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY, 2014, 16 (01): : 85 - 91
  • [48] Feature Fusion and Detection in Alzheimer's Disease Using a Novel Genetic Multi-Kernel SVM Based on MRI Imaging and Gene Data
    Meng, Xianglian
    Wei, Qingpeng
    Meng, Li
    Liu, Junlong
    Wu, Yue
    Liu, Wenjie
    GENES, 2022, 13 (05)
  • [49] MKD-Net: A Novel Neuro Evolutionary Approach for Blockchain-Based Secure Medical Image Classification Using Multi-Kernel DLM
    Vishwakarma, Virendra P.
    Yadav, Abhay Kumar
    IEEE ACCESS, 2025, 13 : 29900 - 29913
  • [50] Multi-kernel learning for multi-label classification with local Rademacher complexity
    Wang, Zhenxin
    Chen, Degang
    Che, Xiaoya
    INFORMATION SCIENCES, 2023, 647