Twisting Manin's universal quantum groups and comodule algebras

被引:0
|
作者
Huang, Hongdi [1 ,2 ]
Nguyen, Van C. [3 ]
Ure, Charlotte [4 ]
Vashaw, Kent B. [5 ]
Veerapen, Padmini [6 ]
Wang, Xingting [7 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
[2] Rice Univ, Dept Math, Houston, TX 77005 USA
[3] US Naval Acad, Dept Math, Annapolis, MD 21402 USA
[4] Illinois State Univ, Dept Math, Normal, IL 61790 USA
[5] MIT, Dept Math, Cambridge, MA 02139 USA
[6] Tennessee Technol Univ, Dept Math, Cookeville, TN 38505 USA
[7] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
关键词
Universal quantum group; Morita-Takeuchi equivalence; 2-co cycle twist; Artin-Schelter regular algebra; Superpotential algebra; DIMENSIONAL HOPF ACTIONS; CALABI-YAU ALGEBRAS; GRADED ALGEBRAS; MCKAY CORRESPONDENCE; REGULAR ALGEBRAS; KOSZUL; PROPERTY;
D O I
10.1016/j.aim.2024.109651
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the notion of quantum -symmetric equivalence of two connected graded algebras, based on Morita-Takeuchi equivalences of their universal quantum groups, in the sense of Manin. We study homological and algebraic invariants of quantum -symmetric equivalence classes, and prove that numerical Tor -regularity, Castelnuovo-Mumford regularity, Artin-Schelter regularity, and the Frobenius property are invariant under any Morita-Takeuchi equivalence. In particular, by combining our results with the work of Raedschelders and Van den Bergh, we prove that Koszul Artin-Schelter regular algebras of a fixed global dimension form a single quantumsymmetric equivalence class. Moreover, we characterize 2co cycle twists (which arise as a special case of quantumsymmetric equivalence) of Koszul duals, of superpotentials, of superpotential algebras, of Nakayama automorphisms of twisted Frobenius algebras, and of Artin-Schelter regular algebras. We also show that finite generation of Hochschild cohomology rings is preserved under certain 2 -co cycle twists. (c) 2024 Elsevier Inc. All rights reserved.
引用
收藏
页数:55
相关论文
共 50 条
  • [41] Quantum affine algebras and universal functional relations
    Nirov, Kh S.
    Razumov, A. V.
    XXIII INTERNATIONAL CONFERENCE ON INTEGRABLE SYSTEMS AND QUANTUM SYMMETRIES (ISQS-23), 2016, 670
  • [42] Clifford algebras and universal sets of quantum states
    Vlasov, AY
    PHYSICAL REVIEW A, 2001, 63 (05): : 4
  • [43] Universal tangle invariant and commutants of quantum algebras
    Lee, HC
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (02): : 393 - 425
  • [44] Weyl algebras over quantum groups
    Zhelobenko, DP
    THEORETICAL AND MATHEMATICAL PHYSICS, 1999, 118 (02) : 152 - 163
  • [45] Inhomogeneous quantum groups for particle algebras
    Arik, M
    Baykal, A
    JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (11) : 4207 - 4217
  • [46] Basic Hopf algebras and quantum groups
    Green, EL
    Solberg, O
    MATHEMATISCHE ZEITSCHRIFT, 1998, 229 (01) : 45 - 76
  • [47] QUANTUM HEISENBERG GROUPS AND SKLYANIN ALGEBRAS
    ANDRUSKIEWITSCH, N
    DEVOTO, J
    TIRABOSCHI, A
    LETTERS IN MATHEMATICAL PHYSICS, 1994, 31 (03) : 167 - 177
  • [48] POLYADIC HOPF ALGEBRAS AND QUANTUM GROUPS
    Duplij, Steven
    EAST EUROPEAN JOURNAL OF PHYSICS, 2021, (02): : 5 - 50
  • [49] Quantum invariance groups of particle algebras
    Arik, M.
    Bilinear Integrable Systems: From Classical to Quatum, Continuous to Discrete, 2006, 201 : 13 - 16
  • [50] Weyl algebras over quantum groups
    D. P. Zhelobenko
    Theoretical and Mathematical Physics, 1999, 118 : 152 - 163