A Comprehensive Augmentation Framework for Anomaly Detection

被引:0
|
作者
Lin, Jiang
Yan, Yaping [1 ]
机构
[1] Southeast Univ, Sch Comp Sci & Engn, Nanjing 210096, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Data augmentation methods are commonly integrated into the training of anomaly detection models. Previous approaches have primarily focused on replicating real-world anomalies or enhancing diversity, without considering that the standard of anomaly varies across different classes, potentially leading to a biased training distribution. This paper analyzes crucial traits of simulated anomalies that contribute to the training of reconstructive networks and condenses them into several methods, thus creating a comprehensive framework by selectively utilizing appropriate combinations. Furthermore, we integrate this framework with a reconstruction-based approach and concurrently propose a split training strategy that alleviates the overfitting issue while avoiding introducing interference to the reconstruction process. The evaluations conducted on the MVTec anomaly detection dataset demonstrate that our method outperforms the previous state-of-the-art approach, particularly in terms of object classes. We also generate a simulated dataset comprising anomalies with diverse characteristics, and experimental results demonstrate that our approach exhibits promising potential for generalizing effectively to various unseen anomalies encountered in real-world scenarios.
引用
收藏
页码:8742 / 8749
页数:8
相关论文
共 50 条
  • [31] A comprehensive approach to anomaly detection in relational databases
    Spalka, A
    Lehnhardt, J
    DATA AND APPLICATIONS SECURITY XIX, PROCEEDINGS, 2005, 3654 : 207 - 221
  • [32] A Comprehensive Review for Video Anomaly Detection on Videos
    Abbas, Zainab K.
    Al-Ani, Ayad A.
    PROCEEDING OF THE 2ND 2022 INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND SOFTWARE ENGINEERING (CSASE 2022), 2022, : 30 - 35
  • [33] Anomaly Detection in Dynamic Graphs: A Comprehensive Survey
    Ekle, Ocheme Anthony
    Eberle, William
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2024, 18 (08)
  • [34] Anomaly Detection in Blockchain Networks: A Comprehensive Survey
    Ul Hassan, Muneeb
    Rehmani, Mubashir Husain
    Chen, Jinjun
    IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2023, 25 (01): : 289 - 318
  • [35] Anomaly Detection of Metro Station Tracks Based on Sequential Updatable Anomaly Detection Framework
    Zheng, Zhongxing
    Liu, Weiming
    Liu, Ruikang
    Wang, Liang
    Mao, Liang
    Qiu, Qisheng
    Ling, Guangzheng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (11) : 7677 - 7691
  • [36] The MVTec Anomaly Detection Dataset: A Comprehensive Real-World Dataset for Unsupervised Anomaly Detection
    Bergmann, Paul
    Batzner, Kilian
    Fauser, Michael
    Sattlegger, David
    Steger, Carsten
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2021, 129 (04) : 1038 - 1059
  • [37] The MVTec Anomaly Detection Dataset: A Comprehensive Real-World Dataset for Unsupervised Anomaly Detection
    Paul Bergmann
    Kilian Batzner
    Michael Fauser
    David Sattlegger
    Carsten Steger
    International Journal of Computer Vision, 2021, 129 : 1038 - 1059
  • [38] Object-Centric Anomaly Detection Using Memory Augmentation
    Dueholm, Jacob Velling
    Nasrollahi, Kamal
    Moeslund, Thomas Baltzer
    COMPUTER ANALYSIS OF IMAGES AND PATTERNS, CAIP 2021, PT 1, 2021, 13052 : 362 - 371
  • [39] DOPING: Generative Data Augmentation for Unsupervised Anomaly Detection with GAN
    Lim, Swee Kiat
    Loo, Yi
    Ngoc-Trung Tran
    Ngai-Man Cheung
    Roig, Gemma
    Elovici, Yuval
    2018 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2018, : 1122 - 1127
  • [40] Counterfactual Data Augmentation With Denoising Diffusion for Graph Anomaly Detection
    Xiao, Chunjing
    Pang, Shikang
    Xu, Xovee
    Li, Xuan
    Trajcevski, Goce
    Zhou, Fan
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2024, : 1 - 13