Adaptive Neural Network Output-Feedback Control for Uncertain Nonlinear Systems via Event-Triggered Output
被引:1
|
作者:
Hu, Yunsong
论文数: 0引用数: 0
h-index: 0
机构:
East China Univ Sci & Technol, Key Lab Smart Mfg Energy Chem Proc, Minist Educ, Shanghai 200237, Peoples R ChinaEast China Univ Sci & Technol, Key Lab Smart Mfg Energy Chem Proc, Minist Educ, Shanghai 200237, Peoples R China
Hu, Yunsong
[1
]
Yan, Huaicheng
论文数: 0引用数: 0
h-index: 0
机构:
East China Univ Sci & Technol, Key Lab Smart Mfg Energy Chem Proc, Minist Educ, Shanghai 200237, Peoples R China
Hunan Univ Sci & Technol, Sch Informat & Elect Engn, Xiangtan 411201, Peoples R ChinaEast China Univ Sci & Technol, Key Lab Smart Mfg Energy Chem Proc, Minist Educ, Shanghai 200237, Peoples R China
Yan, Huaicheng
[1
,2
]
Zhang, Hao
论文数: 0引用数: 0
h-index: 0
机构:
Tongji Univ, Dept Control Sci & Engn, Shanghai 200092, Peoples R ChinaEast China Univ Sci & Technol, Key Lab Smart Mfg Energy Chem Proc, Minist Educ, Shanghai 200237, Peoples R China
Zhang, Hao
[3
]
Wang, Meng
论文数: 0引用数: 0
h-index: 0
机构:
East China Univ Sci & Technol, Key Lab Smart Mfg Energy Chem Proc, Minist Educ, Shanghai 200237, Peoples R ChinaEast China Univ Sci & Technol, Key Lab Smart Mfg Energy Chem Proc, Minist Educ, Shanghai 200237, Peoples R China
Wang, Meng
[1
]
Chen, Chaoyang
论文数: 0引用数: 0
h-index: 0
机构:
Hunan Univ Sci & Technol, Sch Informat & Elect Engn, Xiangtan 411201, Peoples R ChinaEast China Univ Sci & Technol, Key Lab Smart Mfg Energy Chem Proc, Minist Educ, Shanghai 200237, Peoples R China
Chen, Chaoyang
[2
]
机构:
[1] East China Univ Sci & Technol, Key Lab Smart Mfg Energy Chem Proc, Minist Educ, Shanghai 200237, Peoples R China
[2] Hunan Univ Sci & Technol, Sch Informat & Elect Engn, Xiangtan 411201, Peoples R China
[3] Tongji Univ, Dept Control Sci & Engn, Shanghai 200092, Peoples R China
This article systematically studies the issue of adaptive neural network (NN) output-feedback control for uncertain nonlinear systems using event-triggered output. First, to tackle the problem of unmeasurable states, a compact state observer using event-triggered output is constructed. Then, since the event-triggered output signals are discontinuous, the virtual control laws in backstepping design are no longer differentiable. Hence, the dynamic surface control scheme is introduced to resolve this problem. Unlike existing work requiring system functions to satisfy Lipschitz continuity condition, adaptive NN control is incorporated into the designed algorithm to relax the above constraint. What is more, the event-triggered mechanism is also used for parameter estimation to avoid waste of computing and communication resources. Finally, the results of comparative simulations and the DC brush motor experiment are depicted to demonstrate the practicality and effectiveness of the proposed method.
机构:
Univ Sci & Technol Liaoning, Sch Sci, Anshan 114051, Peoples R China
Yeungnam Univ, Dept Elect Engn, Kyongsan 38541, South KoreaUniv Sci & Technol Liaoning, Sch Sci, Anshan 114051, Peoples R China
Wu, Li-Bing
Park, Ju H.
论文数: 0引用数: 0
h-index: 0
机构:
Yeungnam Univ, Dept Elect Engn, Kyongsan 38541, South KoreaUniv Sci & Technol Liaoning, Sch Sci, Anshan 114051, Peoples R China
Park, Ju H.
Xie, Xiang-Peng
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Univ Posts & Telecommun, Inst Adv Technol, Nanjing 210023, Peoples R ChinaUniv Sci & Technol Liaoning, Sch Sci, Anshan 114051, Peoples R China
Xie, Xiang-Peng
Liu, Ya-Juan
论文数: 0引用数: 0
h-index: 0
机构:
North China Elect Power Univ, Control & Comp Engn, Beijing 102206, Peoples R ChinaUniv Sci & Technol Liaoning, Sch Sci, Anshan 114051, Peoples R China