Combining Low-Cost UAV Imagery with Machine Learning Classifiers for Accurate Land Use/Land Cover Mapping

被引:2
|
作者
Detsikas, Spyridon E. [1 ]
Petropoulos, George P. [1 ]
Kalogeropoulos, Kleomenis [2 ]
Faraslis, Ioannis [3 ]
机构
[1] Harokopio Univ Athens, Dept Geog, Athens, Greece
[2] Univ West Att, Dept Surveying & Geoinformat Engn, Athens 12243, Greece
[3] Univ Thessaly, Dept Environm Sci, Larisa 41500, Greece
来源
EARTH | 2024年 / 5卷 / 02期
关键词
UAVs; machine learning; land cover/land use mapping; CLASSIFICATION;
D O I
10.3390/earth5020013
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Land use/land cover (LULC) is a fundamental concept of the Earth's system intimately connected to many phases of the human and physical environment. LULC mappings has been recently revolutionized by the use of high-resolution imagery from unmanned aerial vehicles (UAVs). The present study proposes an innovative approach for obtaining LULC maps using consumer-grade UAV imagery combined with two machine learning classification techniques, namely RF and SVM. The methodology presented herein is tested at a Mediterranean agricultural site located in Greece. The emphasis has been placed on the use of a commercially available, low-cost RGB camera which is a typical consumer's option available today almost worldwide. The results evidenced the capability of the SVM when combined with low-cost UAV data in obtaining LULC maps at very high spatial resolution. Such information can be of practical value to both farmers and decision-makers in reaching the most appropriate decisions in this regard.
引用
收藏
页码:244 / 254
页数:11
相关论文
共 50 条
  • [31] Comparing Machine Learning Classifiers for Object-Based Land Cover Classification Using Very High Resolution Imagery
    Qian, Yuguo
    Zhou, Weiqi
    Yan, Jingli
    Li, Weifeng
    Han, Lijian
    REMOTE SENSING, 2015, 7 (01) : 153 - 168
  • [32] Full Parameter Time Complexity (FPTC): A Method to Evaluate the Running Time of Machine Learning Classifiers for Land Use/Land Cover Classification
    Zheng, Xiaorou
    Jia, Jianxin
    Guo, Shanxin
    Chen, Jinsong
    Sun, Luyi
    Xiong, Yingfei
    Xu, Wenna
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 2222 - 2235
  • [33] From land cover to land use: Applying random forest classifier to Landsat imagery for urban land-use change mapping
    Shih, Hsiao-chien
    Stow, Douglas A.
    Chang, Kou-Chen
    Roberts, Dar A.
    Goulias, Konstadinos G.
    GEOCARTO INTERNATIONAL, 2022, 37 (19) : 5523 - 5546
  • [34] Land Use and Land Cover Mapping with VHR and Multi-Temporal Sentinel-2 Imagery
    Cuypers, Suzanna
    Nascetti, Andrea
    Vergauwen, Maarten
    REMOTE SENSING, 2023, 15 (10)
  • [35] Land use land cover classification using Sentinel imagery based on deep learning models
    Sawant, Suraj
    Ghosh, Jayanta Kumar
    JOURNAL OF EARTH SYSTEM SCIENCE, 2024, 133 (02)
  • [36] A Framework for Subregion Ensemble Learning Mapping of Land Use/Land Cover at the Watershed Scale
    Li, Runxiang
    Gao, Xiaohong
    Shi, Feifei
    REMOTE SENSING, 2024, 16 (20)
  • [37] Classification of land use and land cover through machine learning algorithms: a literature review
    Tobar-Diaz, Rene
    Gao, Yan
    Mas, Jean Francois
    Cambron-Sandoval, Victor Hugo
    REVISTA DE TELEDETECCION, 2023, (62): : 1 - 19
  • [38] LOW-COST COMPUTERIZED LAND-USE CLASSIFICATION
    TURINETTI, JD
    MINTZER, OW
    PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 1974, 40 (04): : 479 - 488
  • [39] Land Cover Prediction from Satellite Imagery Using Machine Learning Techniques
    Panda, Abhisek
    Singh, Abhisek
    Kumar, Keshav
    Kumar, Akash
    Uddeshya
    Swetapadma, Aleena
    PROCEEDINGS OF THE 2018 SECOND INTERNATIONAL CONFERENCE ON INVENTIVE COMMUNICATION AND COMPUTATIONAL TECHNOLOGIES (ICICCT), 2018, : 1403 - 1407
  • [40] Monitoring and analysing the Emirate of Dubai's land use/land cover changes: an integrated, low-cost remote sensing approach
    Elmahdy, Samy Ismail
    Mohamed, Mohamed Mostafa
    INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2018, 11 (11) : 1132 - 1150