Proposal on rain attenuation prediction method using convolutional neural network

被引:0
|
作者
Komatsuya, Yuji [1 ]
Imai, Tetsuro [1 ]
Hirose, Miyuki [2 ]
机构
[1] Tokyo Denki Univ, Dept Informat & Commun Engn, Adachi Ku, Tokyo 1208551, Japan
[2] Kyushu Inst Technol, Dept Elect Engn & Elect, Tobata Ku, Kitakyushu Shi, Fukuoka 8048550, Japan
来源
IEICE COMMUNICATIONS EXPRESS | 2024年 / 13卷 / 06期
关键词
rain attenuation; convolutional neural network; deep learning;
D O I
10.23919/comex.2024SPL0015
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Recently, the practical application of HAPS (High Altitude Platform Station) as the next -generation communication platform is studied actively. HAPS employs adaptive rain attenuation countermeasure techniques such as site diversity methods, therefore it is ideal to predict rain attenuation on the path in real time. We proposed real-time rain attenuation prediction method by convolutional neural network that inputs image of rainfall rate and path distance. Result showed that prediction accuracy of our proposed method is better than a method using conventional formulas.
引用
收藏
页码:181 / 184
页数:4
相关论文
共 50 条
  • [31] Architecture proposal for data extraction of chart images using Convolutional Neural Network
    Chagas, Paulo
    Freitas, Alexandre
    Daisuke, Rafael
    Miranda, Brunelli
    Araujo, Tiago
    Santos, Carlos
    Meiguins, Bianchi
    Morais, Jefferson
    2017 21ST INTERNATIONAL CONFERENCE INFORMATION VISUALISATION (IV), 2017, : 318 - 323
  • [32] Improved method for prediction of rain attenuation in terrestrial links
    Garciá, NAP
    Mello, LARDS
    ELECTRONICS LETTERS, 2004, 40 (11) : 683 - 684
  • [33] Performance of artificial neural network and convolutional neural network on slope failure prediction using data from the random finite element method
    Cheng-Hsi Hsiao
    Albert Y. Chen
    Louis Ge
    Fu-Hsuan Yeh
    Acta Geotechnica, 2022, 17 : 5801 - 5811
  • [34] Performance of artificial neural network and convolutional neural network on slope failure prediction using data from the random finite element method
    Hsiao, Cheng-Hsi
    Chen, Albert Y.
    Ge, Louis
    Yeh, Fu-Hsuan
    ACTA GEOTECHNICA, 2022, 17 (12) : 5801 - 5811
  • [35] A proposal for prediction of pipe wear rate using neural network techniques
    Wang, Fazhan
    Yuan, Sicong
    2006 XI'AN INTERNATIONAL CONFERENCE OF ARCHITECTURE AND TECHNOLOGY, PROCEEDINGS: ARCHITECTURE IN HARMONY, 2006, : 869 - 872
  • [36] Proposal of Prediction Method of Leakage Current Generation of Polymeric Insulators for Distribution Lines using Neural Network
    Ishizeki, Tomoya
    Tsuji, Kazuaki
    Yashima, Masafumi
    Sato, Tomoyuki
    Watanabe, Takuya
    IEEJ Transactions on Power and Energy, 2023, 143 (05): : 282 - 289
  • [37] Tropical Cyclone Intensity Prediction Using Deep Convolutional Neural Network
    Xu, Xiao-Yan
    Shao, Min
    Chen, Pu-Long
    Wang, Qin-Geng
    ATMOSPHERE, 2022, 13 (05)
  • [38] Artificial neural network and convolutional neural network for prediction of dental caries
    Basri, Katrul Nadia
    Yazid, Farinawati
    Zain, Mohd Norzaliman Mohd
    Yusof, Zalhan Md
    Rani, Rozina Abdul
    Zoolfakar, Ahmad Sabirin
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2024, 312
  • [39] Prediction of protein function using a deep convolutional neural network ensemble
    Zacharaki, Evangelia I.
    PEERJ, 2017, 5
  • [40] Paddy Plant Disease Classification and Prediction Using Convolutional Neural Network
    Sagarika, G. K.
    Prasad, Krishna S. J.
    Kumar, Mohana S.
    2020 5TH IEEE INTERNATIONAL CONFERENCE ON RECENT TRENDS ON ELECTRONICS, INFORMATION, COMMUNICATION & TECHNOLOGY (RTEICT-2020), 2020, : 208 - 214