Resonances of the Square Root of the Pauli Operator

被引:4
|
作者
Ito, Hiroshi T. [1 ]
机构
[1] Ehime Univ, Dept Comp Sci, Matsuyama, Ehime 7908577, Japan
关键词
Resonance; Pauli operator; nonrelativistic limit; ESSENTIAL SELF-ADJOINTNESS; POTENTIALS; LIMIT;
D O I
10.4171/PRIMS/53-4-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the spectral properties of two relativistic Hamiltonians: one is the square root of a Pauli operator with an electric potential growing polynomially at infinity, and the other differs from it only in the sign of the potential. Moreover, we show that resonances (eigenvalues) of each of them converge to resonances (eigenvalues) of the corresponding Pauli operators with the same potential in the nonrelativistic limit.
引用
收藏
页码:517 / 549
页数:33
相关论文
共 50 条
  • [31] Binding Threshold for the Pauli–Fierz Operator
    Rafael D. Benguria
    Semjon A. Vugalter
    Letters in Mathematical Physics, 2004, 70 : 249 - 257
  • [32] Resonances at the Threshold for Pauli Operators in Dimension Two
    Breuer, Jonathan
    Kovarik, Hynek
    ANNALES HENRI POINCARE, 2024, 25 (06): : 2839 - 2875
  • [33] EXACT PROPERTIES OF THE PAULI POTENTIAL FOR THE SQUARE ROOT OF THE ELECTRON-DENSITY AND THE KINETIC-ENERGY FUNCTIONAL
    LEVY, M
    OUYANG, H
    PHYSICAL REVIEW A, 1988, 38 (02) : 625 - 629
  • [34] Uniform high-frequency approximations of the square root Helmholtz operator symbol
    Fishman, L
    Gautesen, AK
    Sun, ZM
    WAVE MOTION, 1997, 26 (02) : 127 - 161
  • [35] Assessment of rational approximations for square root operator in bidirectional beam propagation method
    Zhang, Hua
    Mu, Jianwei
    Huang, Wei-Ping
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2008, 26 (5-8) : 600 - 607
  • [36] Analytic representation of the square root operator (vol 38, pg 2479, 2005)
    Gill, TL
    Zachary, WW
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (06): : 1537 - 1538
  • [37] Wave-equation global datuming based on the double square root operator
    Liu, Wenge
    Zhao, Bo
    Zhou, Hua-wei
    He, Zhenhua
    Liu, Hui
    Du, Zengli
    GEOPHYSICS, 2011, 76 (03) : U35 - U43
  • [38] RESONANCES FOR THE DIRAC OPERATOR
    PARISSE, B
    HELVETICA PHYSICA ACTA, 1991, 64 (05): : 557 - 591
  • [39] The spectral operator and resonances
    van Frankenhuijsen, Machiel
    HORIZONS OF FRACTAL GEOMETRY AND COMPLEX DIMENSIONS, 2019, 731 : 115 - 131
  • [40] Quasi-Classical Asymptotics for the Pauli Operator
    Alexander V. Sobolev
    Communications in Mathematical Physics, 1998, 194 : 109 - 134