Three-Carrier Spin Blockade and Coupling in Bilayer Graphene Double Quantum Dots

被引:1
|
作者
Tong, Chuyao [1 ]
Ginzel, Florian [2 ]
Kurzmann, Annika [1 ,3 ]
Garreis, Rebekka [1 ]
Ostertag, Lara [1 ]
Gerber, Jonas D. [1 ]
Huang, Wei Wister [1 ]
Watanabe, Kenji [4 ]
Taniguchi, Takashi [5 ]
Burkard, Guido [2 ]
Danon, Jeroen [6 ]
Ihn, Thomas [1 ]
Ensslin, Klaus [1 ]
机构
[1] Swiss Fed Inst Technol, Solid State Phys Lab, CH-8093 Zurich, Switzerland
[2] Univ Konstanz, Dept Phys, D-78457 Constance, Germany
[3] Rhein Westfal TH Aachen, Inst Phys 2, D-52074 Aachen, Germany
[4] Natl Inst Mat Sci, Res Ctr Funct Mat, 1-1 Namiki, Tsukuba 3050044, Japan
[5] Natl Inst Mat Sci, Int Ctr Mat Nanoarchitecton, 1-1 Namiki, Tsukuba 3050044, Japan
[6] Norwegian Univ Sci & Technol, Ctr Quantum Spintron, Dept Phys, NO-7491 Trondheim, Norway
关键词
Carbon Quantum Dots - Degrees of freedom (mechanics) - Graphene - Graphene quantum dots - Magnetic fields - Magnetic leakage - Mixing - Nanocrystals;
D O I
10.1103/PhysRevLett.133.017001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The spin degrees of freedom is crucial for the understanding of any condensed matter system. Knowledge of spin-mixing mechanisms is not only essential for successful control and manipulation of spin qubits, but also uncovers fundamental properties of investigated devices and material. For electrostatically defined bilayer graphene quantum dots, in which recent studies report spin-relaxation times T1 up to 50 ms with strong magnetic field dependence, we study spin-blockade phenomena at charge configuration (1, 2) <-> (0, 3). We examine the dependence of the spin-blockade leakage current on interdot tunnel coupling and on the magnitude and orientation of externally applied magnetic field. In out-of-plane magnetic field, the observed zero-field current peak could arise from finite-temperature cotunneling with the leads; though involvement of additional spin- and valley-mixing mechanisms are necessary for explaining the persistent sharp side peaks observed. In in-plane magnetic field, we observe a zero-field current dip, attributed to the competition between the spin Zeeman effect and the Kane-Mele spin-orbit interaction. Details of the line shape of this current dip, however, suggest additional underlying mechanisms are at play.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Spin blockade in single and double quantum dots in magnetic fields: A correlation effect
    Imamura, H.
    Aoki, H.
    Maksym, P. A.
    Physical Review B: Condensed Matter, 57 (08):
  • [32] Spin blockade and exchange in Coulomb-confined silicon double quantum dots
    Weber, Bent
    Tan, Y. H. Matthias
    Mahapatra, Suddhasatta
    Watson, Thomas F.
    Ryu, Hoon
    Rahman, Rajib
    Hollenberg, Lloyd C. L.
    Klimeck, Gerhard
    Simmons, Michelle Y.
    NATURE NANOTECHNOLOGY, 2014, 9 (06) : 430 - 435
  • [33] Spin blockade and exchange in Coulomb-confined silicon double quantum dots
    Weber B.
    Tan Y.H.M.
    Mahapatra S.
    Watson T.F.
    Ryu H.
    Rahman R.
    Hollenberg L.C.L.
    Klimeck G.
    Simmons M.Y.
    Nature Nanotechnology, 2014, 9 (6) : 430 - 435
  • [34] Spin blockade in single and double quantum dots in magnetic fields: A correlation effect
    Imamura, H
    Aoki, H
    Maksym, PA
    PHYSICAL REVIEW B, 1998, 57 (08): : R4257 - R4260
  • [35] Energy levels of bilayer graphene quantum dots
    da Costa, D. R.
    Zarenia, M.
    Chaves, Andrey
    Farias, G. A.
    Peeters, F. M.
    PHYSICAL REVIEW B, 2015, 92 (11):
  • [36] Circular quantum dots in twisted bilayer graphene
    Mirzakhani, M.
    Peeters, F. M.
    Zarenia, M.
    PHYSICAL REVIEW B, 2020, 101 (07)
  • [37] Landau levels in graphene bilayer quantum dots
    Pereira, J. M., Jr.
    Peeters, F. M.
    Vasilopoulos, P.
    Costa Filho, R. N.
    Farias, G. A.
    PHYSICAL REVIEW B, 2009, 79 (19):
  • [38] Excited States in Bilayer Graphene Quantum Dots
    Kurzmann, A.
    Eich, M.
    Overweg, H.
    Mangold, M.
    Herman, F.
    Rickhaus, P.
    Pisoni, R.
    Lee, Y.
    Garreis, R.
    Tong, C.
    Watanabe, K.
    Taniguchi, T.
    Ensslin, K.
    Ihn, T.
    PHYSICAL REVIEW LETTERS, 2019, 123 (02)
  • [39] Driven spin transitions in fluorinated single- and bilayer-graphene quantum dots
    Zebrowski, D. P.
    Peeters, F. M.
    Szafran, B.
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2017, 32 (06)
  • [40] Particle–hole symmetry protects spin-valley blockade in graphene quantum dots
    L. Banszerus
    S. Möller
    K. Hecker
    E. Icking
    K. Watanabe
    T. Taniguchi
    F. Hassler
    C. Volk
    C. Stampfer
    Nature, 2023, 618 : 51 - 56