UAV-Enabled Integrated Sensing and Communication: Tracking Design and Optimization

被引:5
|
作者
Jiang, Yifan [1 ,2 ]
Wu, Qingqing [3 ]
Chen, Wen [3 ]
Meng, Kaitao [4 ]
机构
[1] Univ Macau, State Key Lab Internet Things Smart City, Macau 999078, Peoples R China
[2] Shanghai Jiao Tong Univ, Inst Signal Proc & Syst, Shanghai 200240, Peoples R China
[3] Shanghai Jiao Tong Univ, Dept Elect Engn, Shanghai 200240, Peoples R China
[4] UCL, Dept Elect & Elect Engn, London WC1E 7JE, England
关键词
Autonomous aerial vehicles; Trajectory; Target tracking; Covariance matrices; Noise measurement; Sensors; Time measurement; ISAC; UAV; CRB; tracking;
D O I
10.1109/LCOMM.2024.3379504
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Integrated sensing and communications (ISAC) enabled by unmanned aerial vehicles (UAVs) is a promising technology to facilitate target tracking applications. In contrast to conventional UAV-based ISAC system designs that mainly focus on estimating the target position, the target velocity estimation also needs to be considered due to its crucial impacts on link maintenance and real-time response, which requires new designs on resource allocation and tracking scheme. In this letter, we propose an extended Kalman filtering-based tracking scheme for a UAV-enabled ISAC system where a UAV tracks a moving object and also communicates with a device attached to the object. Specifically, a weighted sum of predicted posterior Cram & eacute;r-Rao bound (PCRB) for object relative position and velocity estimation is minimized by optimizing the UAV trajectory, where an efficient solution is obtained based on the successive convex approximation method. Furthermore, under a special case with the measurement mean square error (MSE), the optimal relative motion state is obtained and proved to keep a fixed elevation angle and zero relative velocity. Numerical results validate that the solution to the predicted PCRB minimization can be approximated by the optimal relative motion state when predicted measurement MSE dominates the predicted PCRBs, as well as the effectiveness of the proposed tracking scheme. Moreover, three interesting trade-offs on system performance resulted from the fixed elevation angle are illustrated.
引用
收藏
页码:1024 / 1028
页数:5
相关论文
共 50 条
  • [31] UAV-Enabled Diverse Data Collection via Integrated Sensing and Communication Functions Based on Deep Reinforcement Learning
    Liu, Yaxi
    Li, Xulong
    He, Boxin
    Gu, Meng
    Wei, Huangfu
    DRONES, 2024, 8 (11)
  • [32] Distributed DRL-Based Integrated Sensing, Communication, and Computation in Cooperative UAV-Enabled Intelligent Transportation Systems
    Hou, Peng
    Huang, Yi
    Zhu, Hongbin
    Lu, Zhihui
    Huang, Shih-Chia
    Yang, Yang
    Chai, Hongfeng
    IEEE INTERNET OF THINGS JOURNAL, 2025, 12 (05): : 5792 - 5806
  • [33] Lifetime Maximization for UAV-Enabled Integrated Localization and Communication Networks in Emergency Scenarios
    Yu, Xinyu
    Liu, Zhenyu
    Xu, Lianming
    Wang, Li
    2022 14TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING, WCSP, 2022, : 905 - 909
  • [34] UAV-Enabled Secure Communication With Finite Blocklength
    Wang, Yuntian
    Zhou, Xiaobo
    Zhuang, Zhihong
    Sun, Linlin
    Qian, Yuwen
    Lu, Jinhui
    Shu, Feng
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (12) : 16309 - 16313
  • [35] UAV-Enabled Wireless Power Transfer: Trajectory Design and Energy Optimization
    Xu, Jie
    Zeng, Yong
    Zhang, Rui
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2018, 17 (08) : 5092 - 5106
  • [36] UAV-Enabled Mobile Edge Computing: Offloading Optimization and Trajectory Design
    Zhou, Fuhui
    Wu, Yongpeng
    Sun, Haijian
    Chu, Zheng
    2018 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2018,
  • [37] Optimization of Energy Efficiency in UAV-Enabled Cognitive IoT With Short Packet Communication
    Hu, Hang
    Huang, Yangchao
    Cheng, Guobing
    Kang, Qiaoyan
    Zhang, Hang
    Pan, Yu
    IEEE SENSORS JOURNAL, 2022, 22 (12) : 12357 - 12368
  • [38] Joint Trajectory and Resource Optimization for Covert Communication in UAV-Enabled Relaying Systems
    Li, Meng
    Tao, Xiaofeng
    Wu, Huici
    Li, Na
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (04) : 5518 - 5523
  • [39] Trajectory Optimization for UAV-Enabled Covert Communications
    Wang, Riyu
    Shen, Shikai
    Yang, Bin
    Qian, Kaiguo
    Deng, Fei
    She, Yumei
    Yang, Kai
    Zhang, Yiwen
    2024 INTERNATIONAL CONFERENCE ON NETWORKING AND NETWORK APPLICATIONS, NANA 2024, 2024, : 166 - 171
  • [40] Joint Power Allocation and Trajectory Design for UAV-enabled Secure Communication System
    Yan, Jiaxin
    Yin, Baolin
    Zhao, Liang
    Li, Xinmin
    Wei, Ran
    ASCC 2022 - 2022 13th Asian Control Conference, Proceedings, 2022, : 2007 - 2011