Enhancing smart grid load forecasting: An attention-based deep learning model integrated with federated learning and XAI for security and interpretability

被引:7
|
作者
Sarker, Md Al Amin [1 ]
Shanmugam, Bharanidharan [1 ]
Azam, Sami [1 ]
Thennadil, Suresh [1 ]
机构
[1] Charles Darwin Univ, Energy & Resources Inst, Fac Sci & Technol, Darwin, NT 0909, Australia
来源
关键词
Smart grid; Load forecasting; Deep learning; PSO; Explainable AI; Federated Learning;
D O I
10.1016/j.iswa.2024.200422
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Smart grid is a transformative advancement that modernized the traditional power system for effective electricity management, and involves optimized energy distribution by load forecasting. Precise load forecasting provides the best utilization of energy resources and increases sustainability. Dynamic changes of several connected factors, such as temporal and geographical variability, pose challenges to accurate load prediction. Integrating Artificial Intelligence (AI) in the smart grid can enhance the performance of the forecasting process by capturing these changes. This study investigated load forecasting tasks on four different datasets. Several preprocessing and augmentation techniques are applied to increase the data quality. An attention-based 1D-CNN-GRU model is proposed to capture the temporal patterns from the time-series data, and the hyperparameters of the model are optimized using a particle swarm optimization (PSO) algorithm that also accelerates the convergence and results in an efficient training session. Empirical evaluations highlight that the proposed model substantially minimizes the loss, reflecting the ability to make accurate predictions. It obtains MAE values of 0.12, 0.8, 16.48, and 82.64 for the four datasets. Moreover, the explainable AI (XAI) technique is applied using Shapley Additive explanations (SHAP) to interpret the model prediction, providing the feature ranking based on their prediction score. Moreover, this study utilizes federated learning, enables collaborative training, maintains the privacy of the grid data, and secures the process comprehensively. The aggregation mechanism in federated learning is modified using pruning-based methods that reduce the parameters and computational cost, resulting in a more efficient framework. Integrating all these approaches provides valuable insights for developing a load forecasting model and outlines potential contributions in the smart grid domain.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Enhancing Electricity Load Forecasting with Machine Learning and Deep Learning
    Percuku, Arber
    Minkovska, Daniela
    Hinov, Nikolay
    TECHNOLOGIES, 2025, 13 (02)
  • [22] Attention-based Deep Learning Model for Text Readability Evaluation
    Sun, Yuxuan
    Chen, Keying
    Sun, Lin
    Hu, Chenlu
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [23] An intelligent attention based deep convoluted learning (IADCL) model for smart healthcare security
    Maruthupandi, J.
    Sivakumar, S.
    Dhevi, B. Lakshmi
    Prasanna, S.
    Priya, R. Karpaga
    Selvarajan, Shitharth
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [24] aDFR: An Attention-Based Deep Learning Model for Flight Ranking
    Yi, Yuan
    Cao, Jian
    Tan, YuDong
    Nie, QiangQiang
    Lu, XiaoXi
    WEB INFORMATION SYSTEMS ENGINEERING, WISE 2020, PT II, 2020, 12343 : 548 - 562
  • [25] A Deep Learning Method for Short-Term Residential Load Forecasting in Smart Grid
    Hong, Ye
    Zhou, Yingjie
    Li, Qibin
    Xu, Wenzheng
    Zheng, Xiujuan
    IEEE ACCESS, 2020, 8 (08): : 55785 - 55797
  • [26] Deep Federated Adaptation: An Adaptative Residential Load Forecasting Approach with Federated Learning
    Shi, Yuan
    Xu, Xianze
    SENSORS, 2022, 22 (09)
  • [27] FedForecast: A federated learning framework for short-term probabilistic individual load forecasting in smart grid
    Liu, Yixing
    Dong, Zhen
    Liu, Bo
    Xu, Yiqiao
    Ding, Zhengtao
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2023, 152
  • [28] Deep ensemble learning based probabilistic load forecasting in smart grids
    Yang, Yandong
    Hong, Weijun
    Li, Shufang
    ENERGY, 2019, 189
  • [29] Load forecasting for smart grid based on continuous-learning neural network
    da Silva, Marcela A.
    Abreu, Thays
    Santos-Junior, Carlos Roberto
    Minussi, Carlos R.
    ELECTRIC POWER SYSTEMS RESEARCH, 2021, 201
  • [30] Attention-based Deep Learning for Visual Servoing
    Wang, Bo
    Li, Yuan
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 4388 - 4393