Chaos of Induced Set-Valued Dynamical Systems on Uniform Spaces

被引:0
|
作者
Shao, Hua [1 ,2 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Dept Math, Nanjing 211106, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, MIIT, Key Lab Math Modelling & High Performance Comp Air, Nanjing 211106, Peoples R China
关键词
Nonautonomous set-valued dynamcial system; Uniform space; Chaos; Shadowing property; Chain mixing; TOPOLOGICAL-ENTROPY; ORBITS;
D O I
10.1007/s10884-024-10374-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (X,U)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X,\mathcal {U})$$\end{document} be a Hausdorff uniform space and f0,infinity={fn}n=0 infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_{0,\infty }=\{f_n\}_{n=0}<^>{\infty }$$\end{document} be a sequence of uniformly continuous self-maps on X. The nonautonomous dynamical system (X,f0,infinity)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X,f_{0,\infty })$$\end{document} induces the set-valued dynamical system (K(X),f<overline>0,infinity)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathcal {K}(X),\bar{f}_{0,\infty })$$\end{document} on the hyperspace K(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {K}(X)$$\end{document} consisting of all the nonempty compact subsets of X. In this paper, we mainly investigate the connections between some dynamical properties of (X,f0,infinity)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X,f_{0,\infty })$$\end{document} and those of (K(X),f<overline>0,infinity)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathcal {K}(X),\bar{f}_{0,\infty })$$\end{document}. We prove that chain mixing, shadowing property, h-shadowing property, specification property and multi-F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {F}$$\end{document}-sensitivity of (X,f0,infinity)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X,f_{0,\infty })$$\end{document} is equivalent to that of (K(X),f<overline>0,infinity)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathcal {K}(X),\bar{f}_{0,\infty })$$\end{document}, respectively. In particular, we show that chain mixing of (X,f0,infinity)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X,f_{0,\infty })$$\end{document} and topological mixing of (K(X),f<overline>0,infinity)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathcal {K}(X),\bar{f}_{0,\infty })$$\end{document} are equivalent provided that (X,f0,infinity)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X,f_{0,\infty })$$\end{document} has shadowing property. We obtain that positive topological entropy of (X,f0,infinity)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X,f_{0,\infty })$$\end{document} implies infinite entropy of (K(X),f<overline>0,infinity)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathcal {K}(X),\bar{f}_{0,\infty })$$\end{document} and confirm that topological equi-conjugacy between two dynamical systems is preserved by their induced set-valued systems.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] SPACES OF SET-VALUED FUNCTIONS
    OSTEEN, DN
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 169 (NJUL) : 307 - +
  • [22] Generalized uniform spaces, uniformly locally contractive set-valued dynamic systems and fixed points
    Wlodarczyk, Kazimierz
    Plebaniak, Robert
    FIXED POINT THEORY AND APPLICATIONS, 2012,
  • [23] Set-Valued Chaos in Linear Dynamics
    N. C. Bernardes
    A. Peris
    F. Rodenas
    Integral Equations and Operator Theory, 2017, 88 : 451 - 463
  • [24] Set-Valued Chaos in Linear Dynamics
    Bernardes, N. C., Jr.
    Peris, A.
    Rodenas, F.
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2017, 88 (04) : 451 - 463
  • [25] A cohomological index of Fuller type for set-valued dynamical systems
    Kryszewski, Wojciech
    Skiba, Robert
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (02) : 684 - 716
  • [26] Attractors of weakly asymptotically compact set-valued dynamical systems
    Kloeden, PE
    Valero, J
    SET-VALUED ANALYSIS, 2005, 13 (04): : 381 - 404
  • [27] Perturbations of Set-Valued Dynamical Systems, with Applications to Game Theory
    Benaim, Michel
    Hofbauer, Josef
    Sorin, Sylvain
    DYNAMIC GAMES AND APPLICATIONS, 2012, 2 (02) : 195 - 205
  • [28] Attractors of Weakly Asymptotically Compact Set-Valued Dynamical Systems
    P. E. Kloeden
    J. Valero
    Set-Valued Analysis, 2005, 13 : 381 - 404
  • [29] On the Shadowing Property and Shadowable Point of Set-valued Dynamical Systems
    Xiao Fang Luo
    Xiao Xiao Nie
    Jian Dong Yin
    Acta Mathematica Sinica, English Series, 2020, 36 : 1384 - 1394
  • [30] Perturbations of Set-Valued Dynamical Systems, with Applications to Game Theory
    Michel Benaïm
    Josef Hofbauer
    Sylvain Sorin
    Dynamic Games and Applications, 2012, 2 : 195 - 205