Magneto -band structures of AA -stacked bilayer graphene nanoribbons with armchair and zigzag (BLAGNR and BLZGNR) edges are calculated by the p z -orbital tight -binding model. At zero field, BLAGNR is a semiconductor or metal determined by its width. Magnetic field can reduce band -gap and exhibit crossing bands. For metallic BLZGNRs, crossing bands shift and parabolic bands are separated more widely with magnetic field; however, partial flat bands keep unchanged. Temperature significantly increases plasmon frequency and strength for semiconducting BLAGNRs, but slightly affects those of metallic BLAGNRs and BLZGNRs. Magnetic field, for gapped BLAGNRs, can effectively reduce the threshold temperature for inducing plasmon. Whether magnetoplasmon frequency and critical momentum of dispersion relation increase or decrease is strongly sensitive to nanoribbon's geometry. Field -modulated plasmons with a wide range of frequency could provide potential applications in waveguides and optical sensors.
机构:
Anhui Normal Univ, Dept Phys, Wuhu 241000, Peoples R ChinaAnhui Normal Univ, Dept Phys, Wuhu 241000, Peoples R China
Wang, Dali
Jin, Guojun
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China
Nanjing Univ, Dept Phys, Nanjing 210093, Jiangsu, Peoples R ChinaAnhui Normal Univ, Dept Phys, Wuhu 241000, Peoples R China
机构:
Anhui Normal Univ, Dept Phys, Wuhu 241000, Peoples R ChinaAnhui Normal Univ, Dept Phys, Wuhu 241000, Peoples R China
Wang, Dali
Jin, Guojun
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China
Nanjing Univ, Dept Phys, Nanjing 210093, Jiangsu, Peoples R ChinaAnhui Normal Univ, Dept Phys, Wuhu 241000, Peoples R China