Electron Heating in High Mach Number Collisionless Shocks

被引:0
|
作者
Vanthieghem, A. [1 ,2 ,3 ]
Tsiolis, V. [2 ]
Spitkovsky, A. [2 ]
Todo, Y. [4 ]
Sekiguchi, K. [3 ]
Fiuza, F. [5 ,6 ]
机构
[1] Sorbonne Univ, Univ PSL, Observ Paris, CNRS,LERMA, F-75005 Paris, France
[2] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA
[3] Natl Inst Nat Sci, Dept Astrofus Plasma Phys AFP, Headquarters Cocreat Strategy, Tokyo 1050001, Japan
[4] Natl Inst Nat Sci, Natl Inst Fus Sci, Gifu, 5095292, Japan
[5] Univ Lisbon, GoLP Inst Plasmas & Fusao Nucl, Inst Super Tecn, P-1049001 Lisbon, Portugal
[6] SLAC Natl Accelerator Lab, High Energy Dens Sci Div, Menlo Pk, CA 94025 USA
基金
欧洲研究理事会;
关键词
IN-CELL SIMULATION; PARTICLE-ACCELERATION; MAGNETIC-FIELD; COSMIC-RAYS; PERPENDICULAR SHOCKS; KINETIC SIMULATIONS; SUPERNOVA-REMNANTS; PLASMA; TRANSPORT; INSTABILITIES;
D O I
10.1103/PhysRevLett.132.265201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The energy partition in high Mach number collisionless shock waves is central to a wide range of highenergy astrophysical environments. We present a new theoretical model for electron heating that accounts for the energy exchange between electrons and ions at the shock. The fundamental mechanism relies on the difference in inertia between electrons and ions, resulting in differential scattering of the particles off a decelerating magnetically dominated microturbulence across the shock transition. We show that the selfconsistent interplay between the resulting ambipolar-type electric field and diffusive transport of electrons leads to efficient heating in the magnetic field produced by the Weibel instability in the high Mach number regime and is consistent with fully kinetic simulations.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Dispersive Nature of High Mach Number Collisionless Plasma Shocks: Poynting Flux of Oblique Whistler Waves
    Sundkvist, David
    Krasnoselskikh, V.
    Bale, S. D.
    Schwartz, S. J.
    Soucek, J.
    Mozer, F.
    PHYSICAL REVIEW LETTERS, 2012, 108 (02)
  • [32] Low Mach-number collisionless electrostatic shocks and associated ion acceleration
    Pusztai, I.
    TenBarge, J. M.
    Csapo, A. N.
    Juno, J.
    Hakim, A.
    Yi, L.
    Fulop, T.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2018, 60 (03)
  • [33] Collisionless relaxation of downstream ion distributions in low-Mach number shocks
    Gedalin, M.
    Friedman, Y.
    Balikhin, M.
    PHYSICS OF PLASMAS, 2015, 22 (07)
  • [34] Generation and Evolution of High-Mach-Number Laser-Driven Magnetized Collisionless Shocks in the Laboratory
    Schaeffer, D. B.
    Fox, W.
    Haberberger, D.
    Fiksel, G.
    Bhattacharjee, A.
    Barnak, D. H.
    Hu, S. X.
    Germaschewski, K.
    PHYSICAL REVIEW LETTERS, 2017, 119 (02)
  • [35] Electron preacceleration mechanisms in the foot region of High Alfvenic Mach number shocks
    Schmitz, H
    Chapman, SC
    Dendy, RO
    ASTROPHYSICAL JOURNAL, 2002, 579 (01): : 327 - 336
  • [36] Nonthermal electrons at high Mach number shocks: Electron shock surfing acceleration
    Hoshino, M
    Shimada, N
    ASTROPHYSICAL JOURNAL, 2002, 572 (02): : 880 - 887
  • [37] ELECTRON ACCELERATION AT A LOW MACH NUMBER PERPENDICULAR COLLISIONLESS SHOCK
    Umeda, Takayuki
    Yamao, Masahiro
    Yamazaki, Ryo
    ASTROPHYSICAL JOURNAL, 2009, 695 (01): : 574 - 579
  • [38] HIGH MACH NUMBER TURBULENT MAGNETOSONIC SHOCKS
    WAGNER, CE
    PAPADOPO.K
    HABER, I
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1971, 16 (11): : 1265 - &
  • [39] DETONATION DRIVEN SHOCKS OF HIGH MACH NUMBER
    AHLBORN, B
    HUNI, JP
    JOURNAL OF APPLIED PHYSICS, 1969, 40 (08) : 3402 - &
  • [40] Laboratory evidence of the nonresonant streaming instability in the formation of quasiparallel collisionless shocks at high Alfvénic Mach number
    Bolanos, S.
    Manuel, M. J. -E.
    Bailly-Grandvaux, M.
    Bogale, A. S.
    Caprioli, D.
    Klein, S. R.
    Michta, D.
    Tzeferacos, P.
    Beg, F. N.
    PHYSICAL REVIEW E, 2024, 110 (03)