Advanced Modeling and Simulation of Multilayer Spin-Transfer Torque Magnetoresistive Random Access Memory with Interface Exchange Coupling

被引:4
|
作者
Bendra, Mario [1 ,2 ]
de Orio, Roberto Lacerda [2 ]
Selberherr, Siegfried [2 ]
Goes, Wolfgang [3 ]
Sverdlov, Viktor [1 ,2 ]
机构
[1] L Inst Microelect, Inst Microelect, Christian Doppler Lab Nonvolatile Magnetoresist Me, Gusshausstr 27-29-E360, A-1040 Vienna, Austria
[2] Inst Microelect, TU Wien, Gusshausstr 27-29-E360, A-1040 Vienna, Austria
[3] Silvaco Europe Ltd, Compass Point, Cambridge PE27 5JL, England
关键词
spintronic devices; back-hopping; spin-transfer torques; interlayer exchange coupling; micromagnetics; MRAM; synthetic antiferromagnetic; MAGNETIC TUNNEL-JUNCTIONS; INTERLAYER EXCHANGE; ANISOTROPY;
D O I
10.3390/mi15050568
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In advancing the study of magnetization dynamics in STT-MRAM devices, we employ the spin drift-diffusion model to address the back-hopping effect. This issue manifests as unwanted switching either in the composite free layer or in the reference layer in synthetic antiferromagnets-a challenge that becomes more pronounced with device miniaturization. Although this miniaturization aims to enhance memory density, it inadvertently compromises data integrity. Parallel to this examination, our investigation of the interface exchange coupling within multilayer structures unveils critical insights into the efficacy and dependability of spintronic devices. We particularly scrutinize how exchange coupling, mediated by non-magnetic layers, influences the magnetic interplay between adjacent ferromagnetic layers, thereby affecting their magnetic stability and domain wall movements. This investigation is crucial for understanding the switching behavior in multi-layered structures. Our integrated methodology, which uses both charge and spin currents, demonstrates a comprehensive understanding of MRAM dynamics. It emphasizes the strategic optimization of exchange coupling to improve the performance of multi-layered spintronic devices. Such enhancements are anticipated to encourage improvements in data retention and the write/read speeds of memory devices. This research, thus, marks a significant leap forward in the refinement of high-capacity, high-performance memory technologies.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Technology Trend of Spin-Transfer-Torque Magnetoresistive Random Access Memory (STT-MRAM)
    Kim, D. K.
    Cho, J. U.
    Noh, S. J.
    Kim, Y. K.
    JOURNAL OF THE KOREAN MAGNETICS SOCIETY, 2009, 19 (01): : 22 - 27
  • [22] Total Ionizing Dose and Reliability Evaluation of the ST-DDR4 Spin-transfer Torque Magnetoresistive Random Access Memory (STT-MRAM)
    Vartanian, Sergeh
    Yang-Scharlotta, Jean
    Allen, Gregory R.
    Daniel, Andrew C.
    Costanzo, Daniel
    Mancoff, Frederick B.
    Symalla, Daniel
    Olsen, Andy
    2022 IEEE RADIATION EFFECTS DATA WORKSHOP (REDW) (IN CONJUNCTION WITH 2022 NSREC), 2022, : 216 - 220
  • [23] Two-terminal spin–orbit torque magnetoresistive random access memory
    Noriyuki Sato
    Fen Xue
    Robert M. White
    Chong Bi
    Shan X. Wang
    Nature Electronics, 2018, 1 : 508 - 511
  • [24] Reliable Five-Nanosecond Writing of Spin-Transfer Torque Magnetic Random-Access Memory
    Hu, Guohan
    Nowak, Anusz J.
    Gottwald, Atthias G.
    Sun, Jonathan Z.
    Houssameddine, Dimitri
    Bak, Junghoon
    Brown, Stephen L.
    Hashem, Pouya
    He, Qing
    Kim, Juhyun
    Kothandaraman, Chandrasekharan
    Lauer, Gen
    Lee, Hyun Koo
    Suwannasiri, Thitima
    Trouilloud, Philip L.
    Worledge, Daniel C.
    IEEE MAGNETICS LETTERS, 2019, 10
  • [25] Design of LUT-Based LDPC Decoders for Spin-Transfer Torque Magnetic Random Access Memory
    Duangthong, Chatuporn
    Phakphisut, Watid
    Supnithi, Pornchai
    IEEE TRANSACTIONS ON MAGNETICS, 2022, 58 (08)
  • [26] Analysis of self-heating of thermally assisted spin-transfer torque magnetic random access memory
    Deschenes, Austin
    Muneer, Sadid
    Akbulut, Mustafa
    Gokirmak, Ali
    Silva, Helena
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2016, 7 : 1676 - 1683
  • [27] Performance Prospects of Deeply Scaled Spin-Transfer Torque Magnetic Random-Access Memory for In-Memory Computing
    Shi, Yuhan
    Oh, Sangheon
    Huang, Zhisheng
    Lu, Xiao
    Kang, Seung H.
    Kuzum, Duygu
    IEEE ELECTRON DEVICE LETTERS, 2020, 41 (07) : 1126 - 1129
  • [28] Evaluation of Thermal Stability of Spin-Transfer Torque based Magnoresistive Random-Access Memory for Cache Applications in Advanced Technology Nodes
    Dixit, H.
    Agarwal, S.
    Datta, D.
    Jacob, A.
    Shum, D.
    Benistant, F.
    2018 IEEE INTERNATIONAL MAGNETIC CONFERENCE (INTERMAG), 2018,
  • [29] Nondestructive Self-Reference Scheme for Spin-Transfer Torque Random Access Memory (STT-RAM)
    Chen, Yiran
    Li, Hai
    Wang, Xiaobin
    Zhu, Wenzhong
    Xu, Wei
    Zhang, Tong
    2010 DESIGN, AUTOMATION & TEST IN EUROPE (DATE 2010), 2010, : 148 - 153
  • [30] Dependence of Voltage and Size on Write Error Rates in Spin-Transfer Torque Magnetic Random-Access Memory
    Nowak, Janusz J.
    Robertazzi, Ray P.
    Sun, Jonathan Z.
    Hu, Guohan
    Park, Jeong-Heon
    Lee, JungHyuk
    Annunziata, Anthony J.
    Lauer, Gen P.
    Kothandaraman, Raman
    O'Sullivan, Eugene J.
    Trouilloud, Philip L.
    Kim, Younghyun
    Worledge, Daniel C.
    IEEE MAGNETICS LETTERS, 2016, 7