MPLDP: Multi-Level Personalized Local Differential Privacy Method

被引:0
|
作者
Feng, Xuejie [1 ]
Zhang, Chiping [2 ]
机构
[1] Qingdao Huanghai Univ, Sch Int Business, Qingdao 266427, Peoples R China
[2] Harbin Inst Technol, Dept Math, Harbin 150001, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Privacy; Differential privacy; Protection; Estimation; Optimization methods; Histograms; Perturbation methods; Nonlinear equations; perturbation; nonlinear equations; optimization; personalized; CONDITION NUMBERS; LOCATION PRIVACY; COMPATIBILITY; FRAMEWORK;
D O I
10.1109/ACCESS.2024.3430863
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Users have different sensitivities to different attributes for the same data set. Disregarding this can result in inadequate data confidentiality or reduced data availability. To address this, this paper proposes a multi-level personalized local differential privacy mechanism optimization method. In high-dimensional heterogeneous data scenario, this paper first adopts the optimal privacy budget allocation scheme to allocate the privacy budget of different attributes, and then categorizes the privacy levels into high, medium, and low. Users can freely select the privacy level for each attribute or choose the same level for all attributes. For data analysts, reorganizing data with different privacy levels to achieve histogram estimation is a challenging task. The paper introduces a histogram optimization estimation method based on two evaluation criteria. It proposes a combinatorial optimization method, OC, which minimizes mean square error, and a combinatorial optimization method, OP, based on perturbation theory, which minimizes maximum error. The paper comprehensively studies the balance between data availability and privacy protection based on these two rules.
引用
收藏
页码:99739 / 99754
页数:16
相关论文
共 50 条
  • [31] Personalized Search by a Multi-type and Multi-level User Profile in Folksonomy
    Gou, Zhinan
    Han, Lixin
    Zhu, Jun
    Yang, Yi
    Duan, Baobin
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2018, 43 (12) : 7563 - 7572
  • [32] Personalized Search by a Multi-type and Multi-level User Profile in Folksonomy
    Zhinan Gou
    Lixin Han
    Jun Zhu
    Yi Yang
    Baobin Duan
    Arabian Journal for Science and Engineering, 2018, 43 : 7563 - 7572
  • [33] Multi-level privacy analysis of business processes: the Pleak toolset
    Dumas, Marlon
    Garcia-Banuelos, Luciano
    Jaager, Joosep
    Laud, Peeter
    Matulevicius, Raimundas
    Pankova, Alisa
    Pettai, Martin
    Pullonen-Raudvere, Pille
    Toots, Aivo
    Tuuling, Reedik
    Yerokhin, Maksym
    INTERNATIONAL JOURNAL ON SOFTWARE TOOLS FOR TECHNOLOGY TRANSFER, 2022, 24 (02) : 183 - 203
  • [34] MLCT: A multi-level contact tracing scheme with strong privacy
    Chen, Peng
    Zhang, Jixin
    Chen, Jiageng
    Meng, Weizhi
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2023, 35 (19):
  • [35] Multi-level privacy analysis of business processes: the Pleak toolset
    Marlon Dumas
    Luciano García-Bañuelos
    Joosep Jääger
    Peeter Laud
    Raimundas Matulevičius
    Alisa Pankova
    Martin Pettai
    Pille Pullonen-Raudvere
    Aivo Toots
    Reedik Tuuling
    Maksym Yerokhin
    International Journal on Software Tools for Technology Transfer, 2022, 24 : 183 - 203
  • [36] ReverseCloak: A Reversible Multi-level Location Privacy Protection System
    Li, Chao
    Palanisamy, Balaji
    Kalaivanan, Aravind
    Raghunathan, Sriram
    2017 IEEE 37TH INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS (ICDCS 2017), 2017, : 2521 - 2524
  • [37] A Multi-Level privacy scheme for securing data in a cloud environment
    Olatunji, Ezekiel K.
    Adigun, Matthew O.
    Tarwireyi, Paul
    Lecture Notes in Electrical Engineering, 2015, 313 : 623 - 629
  • [38] Enabling Multi-level Trust in Privacy Preserving Data Mining
    Khan, Shahejad
    Gorhe, Tejas
    Vig, Ramesh
    Patil, Bharati A.
    2015 INTERNATIONAL CONFERENCE ON GREEN COMPUTING AND INTERNET OF THINGS (ICGCIOT), 2015, : 1369 - 1372
  • [39] Marginal Release Under Multi-party Personalized Differential Privacy
    Tang, Peng
    Chen, Rui
    Jin, Chongshi
    Liu, Gaoyuan
    Guo, Shanqing
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT IV, 2023, 13716 : 555 - 571
  • [40] Multi-level personalized k-anonymity privacy-preserving model based on sequential three-way decisions
    Qian, Jin
    Jiang, Haoying
    Yu, Ying
    Wang, Hui
    Miao, Duoqian
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 239