Monte Carlo Tree Search in the Presence of Transition Uncertainty

被引:0
|
作者
Kohankhaki, Farnaz [1 ]
Aghakasiri, Kiarash [1 ,2 ]
Zhang, Hongming [1 ]
Wei, Ting-Han [1 ]
Gao, Chao [2 ]
Mueller, Martin [1 ]
机构
[1] Univ Alberta, Edmonton, AB, Canada
[2] Huawei Canada, Edmonton Res Ctr, Markham, ON, Canada
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Monte Carlo Tree Search (MCTS) is an immensely popular search-based framework used for decision making. It is traditionally applied to domains where a perfect simulation model of the environment is available. We study and improve MCTS in the context where the environment model is given but imperfect. We show that the discrepancy between the model and the actual environment can lead to significant performance degradation with standard MCTS. We therefore develop Uncertainty Adapted MCTS (UA-MCTS), a more robust algorithm within the MCTS framework. We estimate the transition uncertainty in the given model, and direct the search towards more certain transitions in the state space. We modify all four MCTS phases to improve the search behavior by considering these estimates. We prove, in the corrupted bandit case, that adding uncertainty information to adapt UCB leads to tighter regret bound than standard UCB. Empirically, we evaluate UA-MCTS and its individual components on the deterministic domains from the MinAtar test suite. Our results demonstrate that UA-MCTS strongly improves MCTS in the presence of model transition errors.
引用
收藏
页码:20151 / 20158
页数:8
相关论文
共 50 条
  • [21] Learning in POMDPs with Monte Carlo Tree Search
    Katt, Sammie
    Oliehoek, Frans A.
    Amato, Christopher
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70
  • [22] Playing Carcassonne with Monte Carlo Tree Search
    Ameneyro, Fred Valdez
    Galvan, Edgar
    Fernando, Angel
    Morales, Kuri
    2020 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2020, : 2343 - 2350
  • [23] Monte Carlo Tree Search for Love Letter
    Omarov, Tamirlan
    Aslam, Hamna
    Brown, Joseph Alexander
    Reading, Elizabeth
    19TH INTERNATIONAL CONFERENCE ON INTELLIGENT GAMES AND SIMULATION (GAME-ON(R) 2018), 2018, : 10 - 15
  • [24] Incentive Learning in Monte Carlo Tree Search
    Kao, Kuo-Yuan
    Wu, I-Chen
    Yen, Shi-Jim
    Shan, Yi-Chang
    IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, 2013, 5 (04) : 346 - 352
  • [25] Monte Carlo Tree Search With Reversibility Compression
    Cook, Michael
    2021 IEEE CONFERENCE ON GAMES (COG), 2021, : 556 - 563
  • [26] Time Management for Monte Carlo Tree Search
    Baier, Hendrik
    Winands, Mark H. M.
    IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, 2016, 8 (03) : 301 - 314
  • [27] Parallel Monte-Carlo Tree Search
    Chaslot, Guillaume M. J. -B.
    Winands, Mark H. M.
    van den Herik, H. Jaap
    COMPUTERS AND GAMES, 2008, 5131 : 60 - +
  • [28] Parallel Monte Carlo Tree Search on GPU
    Rocki, Kamil
    Suda, Reiji
    ELEVENTH SCANDINAVIAN CONFERENCE ON ARTIFICIAL INTELLIGENCE (SCAI 2011), 2011, 227 : 80 - 89
  • [29] Monte Carlo Tree Search in Lines of Action
    Winands, Mark H. M.
    Bjornsson, Yngvi
    Saito, Jahn-Takeshi
    IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, 2010, 2 (04) : 239 - 250
  • [30] Monte-Carlo Tree Search Solver
    Winands, Mark H. M.
    Bjornsson, Yngvi
    Saito, Jahn-Takeshi
    COMPUTERS AND GAMES, 2008, 5131 : 25 - +