Cauchy-Schwarz Inequality for Shifted Quantum Integral Operator

被引:0
|
作者
Aljinovic, Andrea aglic [1 ]
Dmitrovic, Lana horvat [1 ]
Keko, Ana zgaljic [1 ]
机构
[1] Univ Zagreb, Fac Elect Engn & Comp, Unska 3, Zagreb 10000, Croatia
关键词
q-derivative; q-integral; Cauchy-Schwarz inequality; Ostrowski inequality;
D O I
10.52846/ami.v51i1.1749
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that Cauchy-Schwarz inequality for shifted quantum integral operator does not hold in general and we prove the conditions under which it is valid. We apply it to Ostrowski type inequalities for shifted quantum integral operator.
引用
收藏
页码:106 / 117
页数:12
相关论文
共 50 条
  • [31] A note on the Cauchy-Schwarz inequality for expectations
    Farhadian, Reza
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024, 53 (02) : 812 - 813
  • [32] ON A SPECIAL FORM OF THE CAUCHY-SCHWARZ INEQUALITY
    THIELE, L
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1985, 319 (04): : 405 - 412
  • [33] THE CAUCHY-SCHWARZ INEQUALITY - A GEOMETRIC PROOF
    CANNON, JW
    AMERICAN MATHEMATICAL MONTHLY, 1989, 96 (07): : 630 - 631
  • [34] A CAUCHY-SCHWARZ INEQUALITY FOR TRIPLES OF VECTORS
    Arav, Marina
    Hall, Frank J.
    Li, Zhongshan
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2008, 11 (04): : 629 - 634
  • [35] A CAUCHY-SCHWARZ INEQUALITY FOR OPERATORS WITH APPLICATIONS
    BHATIA, R
    DAVIS, C
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1995, 224 : 119 - 129
  • [36] Cauchy-Schwarz inequality and particle entanglement
    Wasak, T.
    Szankowski, P.
    Zin, P.
    Trippenbach, M.
    Chwedenczuk, J.
    PHYSICAL REVIEW A, 2014, 90 (03):
  • [37] Remark on a refinement of the Cauchy-Schwarz inequality
    Zheng, L
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 218 (01) : 13 - 21
  • [38] Bell inequality for qubits based on the Cauchy-Schwarz inequality
    Chen, Jing-Ling
    Deng, Dong-Ling
    PHYSICAL REVIEW A, 2009, 79 (01):
  • [39] REFINEMENTS OF THE CAUCHY-SCHWARZ INEQUALITY FOR τ-MEASURABLE OPERATORS
    Han, Yazhou
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2016, 10 (04): : 919 - 931
  • [40] A strengthened Cauchy-Schwarz inequality for biorthogonal wavelets
    De Rossi, A
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 1999, 2 (02): : 263 - 282