Effect of heat input on bead geometry and mechanical properties in wire arc additive manufacturing of a nickel aluminum bronze alloy

被引:7
|
作者
Aliyu, Ahmed [1 ]
Bishop, Donald Paul [1 ]
Nasiri, Ali [1 ]
机构
[1] Dalhousie Univ, Dept Mech Engn, 1360 Barrington St, Halifax, NS B3H 4R2, Canada
关键词
Nickel aluminum bronze; Wire arc additive manufacturing; Bead geometry; Microstructure; Mechanical properties; PARAMETERS; DEPOSITION; WAAM;
D O I
10.1016/j.jmrt.2024.05.203
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Wire arc additive manufacturing (WAAM) stands as an efficient and cost-effective method for producing largescale engineering components while minimizing waste. This study explores the influence of WAAM process parameters on nickel aluminum bronze (NAB) parts, focusing on the wire feed rate (WFR) as a key factor governing heat input and its effects on bead geometry, microstructure, and mechanical properties. The investigation involved depositing a single bead from NAB alloy while varying the WFS within the 2-7 m/min range, resulting in heat inputs ranging from 20.600 to 57.960 kJ/m. The results revealed that increasing heat input up to 34.944 kJ/m led to an augmentation in the bead dimensions and increased hardness due to kappa-precipitates formation within the alpha-Cu matrix. However, with further increments in heat input to 49.088 kJ/m and 57.960 kJ/m, the bead dimensions and hardness exhibited a decline as the uniformity of intermetallic kappa distribution lessened. Through optimization of WAAM process parameters, a defect-free single-wall NAB was successfully manufactured with enhanced properties. The tensile strength along the horizontal direction for the single-wall NAB alloy was found to be superior to that of the vertical direction, irrespective of the specimen's extraction regions. Additionally, the bottom specimen exhibited slightly higher tensile strength than the center and upper specimens due to being the initial layers of the wall deposited on the substrate plate, undergoing a faster cooling rate. These findings underscore the potential of WAAM as a robust method for the fabrication of larger NAB components with precision and efficiency.
引用
收藏
页码:8043 / 8053
页数:11
相关论文
共 50 条
  • [21] Accurate prediction of the bead geometry in wire arc additive manufacturing process
    Francesco Lambiase
    Silvia Ilaria Scipioni
    Alfonso Paoletti
    The International Journal of Advanced Manufacturing Technology, 2022, 119 : 7629 - 7639
  • [22] Effect of heat input on microstructural and mechanical properties of high strength low alloy steel block parts fabricated by wire arc additive manufacturing
    Fang, Qian
    Zhao, Lin
    Chen, Cuixin
    Zhu, Yanjie
    Peng, Yun
    Yin, Fuxing
    MATERIALS TODAY COMMUNICATIONS, 2023, 34
  • [23] Accurate prediction of the bead geometry in wire arc additive manufacturing process
    Lambiase, Francesco
    Scipioni, Silvia Ilaria
    Paoletti, Alfonso
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2022, 119 (11-12): : 7629 - 7639
  • [24] Predictive Modelling of Weld Bead Geometry in Wire Arc Additive Manufacturing
    Sket, Kristijan
    Brezocnik, Miran
    Karner, Timi
    Belsak, Rok
    Ficko, Mirko
    Vuherer, Tomaz
    Gotlih, Janez
    JOURNAL OF MANUFACTURING AND MATERIALS PROCESSING, 2025, 9 (02):
  • [25] Effect of Heat Treatment on Wire + Arc Additive Manufactured Aluminum 5356 Alloy: Mechanical Properties and Microstructure Correlation
    N. Harshavardhana
    S. P Sundar Singh Sivam
    Rahul Ryan Savio
    Ahin Honymon
    V. Apramayan
    Gulshan Kumar
    Ashish Kumar Saxena
    Physics of Metals and Metallography, 2023, 124 : 1845 - 1855
  • [26] High deposition wire arc additive manufacturing of mild steel: Strategies and heat input effect on microstructure and mechanical properties
    Aldalur, E.
    Veiga, F.
    Suarez, A.
    Bilbao, J.
    Lamikiz, A.
    JOURNAL OF MANUFACTURING PROCESSES, 2020, 58 : 615 - 626
  • [27] Effect of Heat Input on Microstructure and Mechanical Properties of Marine High Strength Steel Fabricated by Wire Arc Additive Manufacturing
    Hou Xuru
    Zhao Lin
    Ren Shubin
    Peng Yun
    Ma Chengyong
    Tian Zhiling
    ACTA METALLURGICA SINICA, 2023, 59 (10) : 1311 - 1323
  • [29] Effect of Alloying Powders on Microstructure and Mechanical Properties of Aluminum Alloy Arc Additive Manufacturing
    Wang, Liwei
    Hu, Huan
    Wu, Tao
    Liu, Aiping
    Wu, Ziqin
    Wang, Qian
    Narayanaswamy, Balaji
    Liang, Zhimin
    Wang, Dianlong
    Yang, Guang
    3D PRINTING AND ADDITIVE MANUFACTURING, 2023, 10 (01) : 83 - 100
  • [30] Mechanical properties and microstructure revolution of vibration assisted wire arc additive manufacturing 2319 aluminum alloy
    Zhang, Liang
    Wang, Songtao
    Wang, Huixia
    Wang, Jun
    Bian, Wenzhuo
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2023, 885