Improving Federated Person Re-Identification through Feature-Aware Proximity and Aggregation

被引:2
|
作者
Zhang, Pengling [1 ]
Yan, Huibin [1 ]
Wu, Wenhui [1 ]
Wang, Shuoyao [1 ]
机构
[1] Shenzhen Univ, Shenzhen, Peoples R China
来源
PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023 | 2023年
基金
中国国家自然科学基金;
关键词
Person Re-Identification; Federated Learning; Feature Representation;
D O I
10.1145/3581783.3612350
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Person re-identification (ReID) is a challenging task that aims to identify individuals across multiple non-overlapping camera views. To enhance the performance and robustness of ReID models, it is crucial to train them over multiple data sources. However, the traditional centralized approach poses a significant challenge to privacy as it requires collecting data from distributed data owners. To over-come this challenge, we employ the federated learning approach, which enables distributed model training without compromising data privacy. In this paper, we propose a novel feature-aware local proximity and global aggregation method for federated ReID to extract robust feature representations. Specifically, we introduce a proximal term and a feature regularization term for local model training to improve local training accuracy while ensuring global aggregation convergence. Furthermore, we use the cosine distance of backbone features to determine the global aggregation weight of each local model. Our proposed method significantly improves the performance and generalization of the global model. Extensive experiments demonstrate the effectiveness of our proposal. Specifically, our method achieves an additional 27.3% Rank-1 average accuracy in federated full supervision and an extra 20.3% mean Average Precision (mAP) on DukeMTMC in federated domain generalization. The codes and the pretrained models are available at https://github.com/EarthTraveler1/FFReID.
引用
收藏
页码:2498 / 2506
页数:9
相关论文
共 50 条
  • [21] Feature Fusion and Center Aggregation for Visible-Infrared Person Re-Identification
    Wang, Xianju
    Chen, Cuiqun
    Zhu, Yong
    Chen, Shuguang
    IEEE ACCESS, 2022, 10 : 30949 - 30958
  • [22] Feature Aggregation With Reinforcement Learning for Video-Based Person Re-Identification
    Zhang, Wei
    He, Xuanyu
    Lu, Weizhi
    Qiao, Hong
    Li, Yibin
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2019, 30 (12) : 3847 - 3852
  • [23] Combination of validity aggregation and multi-scale feature for person re-identification
    Zhi-yong Huang
    Wen-cheng Qin
    Fen Luo
    Tian-hui Guan
    Fang Xie
    Shu Han
    Da-ming Sun
    Journal of Ambient Intelligence and Humanized Computing, 2023, 14 : 3353 - 3368
  • [24] Domain generalized federated learning for Person Re-identification
    Liu, Fangyi
    Ye, Mang
    Du, Bo
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2024, 241
  • [25] Deep Feature Ranking for Person Re-Identification
    Nie, Jie
    Huang, Lei
    Zhang, Wenfeng
    Wei, Guanqun
    Wei, Zhiqiang
    IEEE ACCESS, 2019, 7 : 15007 - 15017
  • [26] Omnidirectional Feature Learning for Person Re-Identification
    Wu, Di
    Yang, Hong-Wei
    Huang, De-Shuang
    Yuan, Chang-An
    Qin, Xiao
    Zhao, Yang
    Zhao, Xin-Yong
    Sun, Jian-Hong
    IEEE ACCESS, 2019, 7 : 28402 - 28411
  • [27] A feature enhancement loss for person re-identification
    Peng, Yao
    Lin, Yining
    Ni, Huajian
    Gao, Hua
    Hu, Chenchen
    SYSTEMS SCIENCE & CONTROL ENGINEERING, 2023, 11 (01)
  • [28] Feature mask network for person re-identification
    Ding, Guodong
    Khan, Salman
    Tang, Zhenmin
    Porikli, Fatih
    PATTERN RECOGNITION LETTERS, 2020, 137 : 91 - 98
  • [29] Appearance feature enhancement for person re-identification
    Zhang, Wenfeng
    Huang, Lei
    Wei, Zhiqiang
    Nie, Jie
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 163
  • [30] Spectral Feature Transformation for Person Re-Identification
    Luo, Chuanchen
    Chen, Yuntao
    Wang, Naiyan
    Zhang, Zhaoxiang
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 4975 - 4984