Geodesic Graph Neural Network for Efficient Graph Representation Learning

被引:0
|
作者
Kong, Lecheng [1 ]
Chen, Yixin [1 ]
Zhang, Muhan [2 ]
机构
[1] Washington Univ St Louis, Washington, DC 63130 USA
[2] Peking Univ, Beijing, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graph Neural Networks (GNNs) have recently been applied to graph learning tasks and achieved state-of-the-art (SOTA) results. However, many competitive methods run GNNs multiple times with subgraph extraction and customized labeling to capture information that is hard for normal GNNs to learn. Such operations are time-consuming and do not scale to large graphs. In this paper, we propose an efficient GNN framework called Geodesic GNN (GDGNN) that requires only one GNN run and injects conditional relationships between nodes into the model without labeling. This strategy effectively reduces the runtime of subgraph methods. Specifically, we view the shortest paths between two nodes as the spatial graph context of the neighborhood around them. The GNN embeddings of nodes on the shortest paths are used to generate geodesic representations. Conditioned on the geodesic representations, GDGNN can generate node, link, and graph representations that carry much richer structural information than plain GNNs. We theoretically prove that GDGNN is more powerful than plain GNNs. We present experimental results to show that GDGNN achieves highly competitive performance with SOTA GNN models on various graph learning tasks while taking significantly less time.
引用
收藏
页数:14
相关论文
共 50 条
  • [11] Learning Heuristic A*: Efficient Graph Search using Neural Network
    Kim, Soonkyum
    An, Byungchul
    2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 9542 - 9547
  • [12] Learning Effective Road Network Representation with Hierarchical Graph Neural Networks
    Wu, Ning
    Zhao, Wayne Xin
    Wang, Jingyuan
    Pan, Dayan
    KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 6 - 14
  • [13] Learning graph representation with Randomized Neural Network for dynamic texture classification
    Ribas, Lucas C.
    de Mesquita Sa Junior, Jarbas Joaci
    Manzanera, Antoine
    Bruno, Odemir M.
    APPLIED SOFT COMPUTING, 2022, 114
  • [14] Multi-view Graph Neural Network for Fair Representation Learning
    Zhang, Guixian
    Yuan, Guan
    Cheng, Debo
    He, Ludan
    Bing, Rui
    Li, Jiuyong
    Zhang, Shichao
    WEB AND BIG DATA, APWEB-WAIM 2024, PT III, 2024, 14963 : 208 - 223
  • [15] A recurrent graph neural network for inductive representation learning on dynamic graphs
    Yao, Hong-Yu
    Zhang, Chun-Yang
    Yao, Zhi-Liang
    Chen, C. L. Philip
    Hu, Junfeng
    PATTERN RECOGNITION, 2024, 154
  • [16] Heterogeneous Graph Neural Network With Multi-View Representation Learning
    Shao, Zezhi
    Xu, Yongjun
    Wei, Wei
    Wang, Fei
    Zhang, Zhao
    Zhu, Feida
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (11) : 11476 - 11488
  • [17] DPGNN: Dual-perception graph neural network for representation learning
    Zhou, Li
    Chen, Wenyu
    Zeng, Dingyi
    Cheng, Shaohuan
    Liu, Wanlong
    Zhang, Malu
    Qu, Hong
    KNOWLEDGE-BASED SYSTEMS, 2023, 268
  • [18] A Graph Regularized Deep Neural Network for Unsupervised Image Representation Learning
    Yang, Shijie
    Li, Liang
    Wang, Shuhui
    Zhang, Weigang
    Huang, Qingming
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 7053 - 7061
  • [19] Self-supervised Hierarchical Graph Neural Network for Graph Representation
    Bandyopadhyay, Sambaran
    Aggarwal, Manasvi
    Murty, M. Narasimha
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 603 - 608
  • [20] Mathematical expression exploration with graph representation and generative graph neural network
    Liu, Jingyi
    Li, Weijun
    Yu, Lina
    Wu, Min
    Li, Wenqiang
    Li, Yanjie
    Hao, Meilan
    NEURAL NETWORKS, 2025, 187