A Review on Wire Arc Additive Manufacturing of Magnesium Alloys: Wire Preparation, Defects and Properties

被引:3
|
作者
Li, Yi [1 ]
Yin, Siqi [2 ,3 ]
Zhang, Guangzong [2 ,4 ]
Wang, Changfeng [2 ,4 ]
Liu, Xiao [2 ,4 ]
Guan, Renguo [2 ,4 ]
机构
[1] Northeastern Univ, Sch Mat Sci & Engn, Shenyang 110819, Peoples R China
[2] Dalian Jiaotong Univ, Key Lab Near Net Forming Light Met Liaoning Prov, Dalian 116028, Peoples R China
[3] Dalian Jiaotong Univ, Sch Mech Engn, Dalian 116028, Peoples R China
[4] Dalian Jiaotong Univ, Engn Res Ctr Continuous Extrus, Minist Educ, Dalian 116028, Peoples R China
基金
中国国家自然科学基金;
关键词
Wire arc additive manufacturing; Wire preparation; Defects; Properties; Quality improvement; THIN-WALLED PARTS; MECHANICAL-PROPERTIES; RESIDUAL-STRESS; CORROSION-RESISTANCE; MICROSTRUCTURE EVOLUTION; DAMPING CAPACITIES; TENSILE PROPERTIES; SINGLE-CRYSTAL; HEAT-TREATMENT; ALUMINUM;
D O I
10.1007/s12540-024-01724-7
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Wire arc additive manufacturing (WAAM) is widely used in the rapid prototyping of large parts because of its high deposition rate, high material utilization rate as well as low cost. However, the manufacturing process of magnesium alloy wires is relatively difficult, and the defects and performance of parts are difficult to control. This paper reviews the preparation process of magnesium alloy wires, which aims to achieve surface control and performance optimization of wires. Due to the quality of wires and the high processing temperature, the defects often occur in the deposition process. The common defects of magnesium alloy parts by WAAM are discussed and solutions are given to minimize it. The research advances in microstructure, mechanical properties, damping properties and corrosion properties are summarized. WAAM has performance advantages compared to casting, but the microstructure is inhomogeneous and the properties are anisotropic. Several quality improvement strategies are reported to improve properties and reduce defects. The effectiveness and applicability of these strategies are discussed, and the future prospects of WAAM for magnesium alloys are proposed. The preparation of high-performance wires, the formation mechanism of defects and microstructure are three keys for future improvement of WAAM for magnesium alloy.
引用
收藏
页码:3243 / 3267
页数:25
相关论文
共 50 条
  • [11] A Review on the Basic Process and the Influences of Process Parameters on Wire-Arc Additive Manufacturing Technology of Magnesium Alloys
    Ling Z.
    Wang L.
    Zhang Z.
    Zhao Z.
    Bai P.
    Cailiao Daobao/Materials Reports, 2024, 38 (07):
  • [12] A Review of Challenges for Wire and Arc Additive Manufacturing (WAAM)
    Lei Huang
    Xizhang Chen
    Sergey Konovalov
    Chuanchu Su
    Pengfei Fan
    Yanhu Wang
    Pan Xiaoming
    Irina Panchenko
    Transactions of the Indian Institute of Metals, 2023, 76 : 1123 - 1139
  • [13] A Review of Challenges for Wire and Arc Additive Manufacturing (WAAM)
    Huang, Lei
    Chen, Xizhang
    Konovalov, Sergey
    Su, Chuanchu
    Fan, Pengfei
    Wang, Yanhu
    Xiaoming, Pan
    Panchenko, Irina
    TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS, 2023, 76 (05) : 1123 - 1139
  • [14] A review on wire and arc additive manufacturing of titanium alloy
    Lin, Zidong
    Song, Kaijie
    Yu, Xinghua
    JOURNAL OF MANUFACTURING PROCESSES, 2021, 70 : 24 - 45
  • [15] Wire Arc Additive Manufacturing of Stainless Steels: A Review
    Jin, Wanwan
    Zhang, Chaoqun
    Jin, Shuoya
    Tian, Yingtao
    Wellmann, Daniel
    Liu, Wen
    APPLIED SCIENCES-BASEL, 2020, 10 (05):
  • [16] Spectral diagnosis of wire arc additive manufacturing of Al alloys
    Zhang, Chen
    Gao, Ming
    Chen, Cong
    Zeng, Xiaoyan
    ADDITIVE MANUFACTURING, 2019, 30
  • [17] Research progress in wire arc additive manufacturing of aluminum alloys
    Han Q.
    Fu R.
    Hu J.
    Guo Y.
    Han Y.
    Wang J.
    Ji T.
    Lu J.
    Liu C.
    Cailiao Gongcheng/Journal of Materials Engineering, 2022, 50 (04): : 62 - 73
  • [18] Recent developments and challenges accompanying with wire arc additive manufacturing of Mg alloys: A review
    Madhuri, Nalla
    Jayakumar, V
    Sathishkumar, M.
    MATERIALS TODAY-PROCEEDINGS, 2021, 46 : 8573 - 8577
  • [19] Wire plus Arc Additive Manufacturing
    Williams, S. W.
    Martina, F.
    Addison, A. C.
    Ding, J.
    Pardal, G.
    Colegrove, P.
    MATERIALS SCIENCE AND TECHNOLOGY, 2016, 32 (07) : 641 - 647
  • [20] Development of a High Strength Magnesium Alloy for Wire Arc Additive Manufacturing
    Gneiger, Stefan
    Oesterreicher, Johannes A.
    Arnoldt, Aurel R.
    Birgmann, Alois
    Fehlbier, Martin
    METALS, 2020, 10 (06) : 1 - 14