Recent advances in transition metal oxides as anode materials for high-performance lithium-ion capacitors

被引:13
|
作者
Zhao, Chunyu [1 ,3 ,5 ]
Yao, Shuyu [1 ]
Li, Chen [2 ,3 ,5 ]
An, Yabin [2 ,3 ,4 ]
Zhao, Shasha [2 ,4 ]
Sun, Xianzhong [2 ,3 ,4 ,5 ]
Wang, Kai [2 ,3 ,4 ,5 ]
Zhang, Xiong [2 ,3 ,4 ,5 ]
Ma, Yanwei [2 ,3 ,4 ,5 ]
机构
[1] Shandong Univ Sci & Technol, Qingdao 266590, Peoples R China
[2] Chinese Acad Sci, Inst Elect Engn, Key Lab High Dens Electromagnet Power & Syst, Beijing 100190, Peoples R China
[3] Inst Elect Engn & Adv Electromagnet Drive Technol, Qilu Zhongke, Shandong Key Lab Adv Electromagnet Convers Technol, Jinan 250013, Peoples R China
[4] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[5] Shandong Inst Ind Technol, Jinan 250102, Peoples R China
关键词
Transition metal oxides; Lithium-ion capacitors; Anode materials; Storage mechanism; Advanced characterization; HIGH-ENERGY; HIGH-POWER; ELECTROCHEMICAL PERFORMANCE; HYBRID SUPERCAPACITOR; NEGATIVE ELECTRODES; POROUS CARBON; RATE CAPABILITY; MORPHOLOGY CONTROL; MNO NANOPARTICLES; LI4TI5O12; ANODE;
D O I
10.1016/j.cej.2024.154535
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In recent years, driven by the widespread adoption of hybrid electric vehicles and portable electronic devices, there has been a notable surge in demand for energy storage devices boasting high power density and energy density. Additionally, the growing emphasis on renewable energy sources has spurred an immediate need for high energy density storage solutions. Lithium-ion capacitors (LICs) represent a novel class of energy storage devices positioned between supercapacitors and lithium-ion batteries. Leveraging their high power density, high energy density, and extended cycle life, LICs are poised to meet the burgeoning demand for advanced energy storage technologies. Transition metal oxide (TMO) materials boast exceptional lithium storage capacity, a moderate voltage platform, abundant resources, affordability, eco-friendliness, making them ideal candidates as anode electrode materials for LICs. This review explores the various preparation methods employed for transition metal oxide anodes, delving into their electrochemical properties and conducting a thorough analysis of their advantages and drawbacks as anode materials for LICs. Furthermore, the review offers insights into the prospective future directions for the development of transition metal oxide anodes, guiding research efforts toward enhancing the performance and applicability of TMO-based LICs.
引用
收藏
页数:31
相关论文
共 50 条
  • [11] High-Performance Anode Materials for Rechargeable Lithium-Ion Batteries
    Jun Lu
    Zhongwei Chen
    Feng Pan
    Yi Cui
    Khalil Amine
    Electrochemical Energy Reviews, 2018, 1 : 35 - 53
  • [12] High-Performance Anode Materials for Rechargeable Lithium-Ion Batteries
    Lu, Jun
    Chen, Zhongwei
    Pan, Feng
    Cui, Yi
    Amine, Khalil
    ELECTROCHEMICAL ENERGY REVIEWS, 2018, 1 (01) : 35 - 53
  • [13] MOFs-derived metal oxides inlayed in carbon nanofibers as anode materials for high-performance lithium-ion batteries
    Li, Zhuo
    Hu, Xianwei
    Shi, Zhongning
    Lu, Jinlin
    Wang, Zhaowen
    APPLIED SURFACE SCIENCE, 2020, 531 (531)
  • [14] Review of metal oxides as anode materials for lithium-ion batteries
    Du, Jiakai
    Li, Qingmeng
    Chai, Jiali
    Jiang, Lei
    Zhang, Qianqian
    Han, Ning
    Zhang, Wei
    Tang, Bohejin
    DALTON TRANSACTIONS, 2022, 51 (25) : 9584 - 9590
  • [15] Recent advances in high-voltage lithium-ion capacitors
    Xu, Dehong
    Zhang, Xiaohu
    Zhang, Keliang
    Han, Yongqin
    Sun, Xianzhong
    Xu, Yanan
    Li, Chen
    Wang, Kai
    Zhang, Xiong
    Ma, Yanwei
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2025,
  • [16] Recent Advances in MXenes for Lithium-Ion Capacitors
    Zhang, Xiong
    Wang, Lei
    Liu, Wenjie
    Li, Chen
    Wang, Kai
    Ma, Yanwei
    ACS OMEGA, 2020, 5 (01): : 75 - 82
  • [17] Recent advances in prelithiation materials and approaches for lithium-ion batteries and capacitors
    Sun, Congkai
    Zhang, Xiong
    Li, Chen
    Wang, Kai
    Sun, Xianzhong
    Ma, Yanwei
    ENERGY STORAGE MATERIALS, 2020, 32 (32) : 497 - 516
  • [18] Lithium alloys and metal oxides as high-capacity anode materials for lithium-ion batteries
    Liang, Chu
    Gao, Mingxia
    Pan, Hongge
    Liu, Yongfeng
    Yan, Mi
    JOURNAL OF ALLOYS AND COMPOUNDS, 2013, 575 : 246 - 256
  • [19] Double Transition-Metal Chalcogenide as a High-Performance Lithium-Ion Battery Anode Material
    Chen, Dongyun
    Ji, Ge
    Ding, Bo
    Ma, Yue
    Qu, Baihua
    Chen, Weixiang
    Lee, Jim Yang
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2014, 53 (46) : 17901 - 17908
  • [20] A Minireview on High-Performance Anodes for Lithium-Ion Capacitors
    Zheng, Junsheng
    Xing, Guangguang
    Zhang, Luyao
    Lu, Yanyan
    Jin, Liming
    Zheng, Jim P.
    BATTERIES & SUPERCAPS, 2021, 4 (06) : 897 - 908