Network and panel quantile effects via distribution regression

被引:6
|
作者
Chernozhukov, Victor [1 ]
Fernandez-Val, Ivan [2 ]
Weidner, Martin [3 ,4 ]
机构
[1] MIT, Dept Econ, Cambridge, MA 02139 USA
[2] Boston Univ, Dept Econ, Boston, MA 02215 USA
[3] UCL, Dept Econ, Gower St, London WC1E 6BT, England
[4] Inst Fiscal Studies, Ctr Microdata Methods & Practice, 7 Ridgmount St, London WC1E 7AE, England
基金
美国国家科学基金会; 英国经济与社会研究理事会; 欧洲研究理事会;
关键词
Quantile effects; Counterfactual distributions; Fixed effects; Incidental parameter problem; Long panels; BIAS CORRECTIONS; MODELS; GRAVITY; TRADE;
D O I
10.1016/j.jeconom.2020.08.009
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper provides a method to construct simultaneous confidence bands for quantile functions and quantile effects in nonlinear network and panel models with unobserved two-way effects, strictly exogenous covariates, and possibly discrete outcome variables. The method is based upon projection of simultaneous confidence bands for distribution functions constructed from fixed effects distribution regression estimators. These fixed effects estimators are debiased to deal with the incidental parameter problem. Under asymptotic sequences where both dimensions of the data set grow at the same rate, the confidence bands for the quantile functions and effects have correct joint coverage in large samples. An empirical application to gravity models of trade illustrates the applicability of the methods to network data. (c) 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:28
相关论文
共 50 条
  • [21] Efficient minimum distance estimator for quantile regression fixed effects panel data
    Galvao, Antonio F.
    Wang, Liang
    JOURNAL OF MULTIVARIATE ANALYSIS, 2015, 133 : 1 - 26
  • [22] Identifying interaction effects via additive quantile regression models
    Zhu, Qianqian
    Hu, Yanan
    Tian, Maozai
    Statistics and Its Interface, 2017, 10 (02) : 255 - 265
  • [23] A panel data quantile regression analysis of the immigrant earnings distribution in the United Kingdom and United States
    Billger, Sherrilyn M.
    Lamarche, Carlos
    EMPIRICAL ECONOMICS, 2015, 49 (02) : 705 - 750
  • [24] Generalized linear mixed quantile regression with panel data
    Lu, Xiaoming
    Fan, Zhaozhi
    PLOS ONE, 2020, 15 (08):
  • [25] Expectile and M-quantile regression for panel data
    Danilevicz, Ian Meneghel
    Reisen, Valderio Anselmo
    Bondon, Pascal
    STATISTICS AND COMPUTING, 2024, 34 (03)
  • [26] Mid-quantile regression for discrete panel data
    Russo, Alfonso
    Farcomeni, Alessio
    Geraci, Marco
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2024, 94 (12) : 2754 - 2771
  • [27] Robust penalized quantile regression estimation for panel data
    Lamarche, Carlos
    JOURNAL OF ECONOMETRICS, 2010, 157 (02) : 396 - 408
  • [28] Reconsideration of a simple approach to quantile regression for panel data
    Besstremyannaya, Galina
    Golovan, Sergei
    ECONOMETRICS JOURNAL, 2019, 22 (03): : 292 - +
  • [29] Is aid for trade effective? A panel quantile regression approach
    Martinez-Zarzoso, Inmaculada
    Nowak-Lehmann D., Felicitas
    Rehwald, Kai
    REVIEW OF DEVELOPMENT ECONOMICS, 2017, 21 (04) : E175 - E203
  • [30] Panel Data Quantile Regression for Treatment Effect Models
    Ishihara, Takuya
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2023, 41 (03) : 720 - 736