Data integration of Sentinel-1 and Sentinel-2 for evaluating vegetation biomass and water status

被引:0
|
作者
Pilia, S. [1 ]
Fontanelli, G. [1 ]
Santurri, L. [1 ]
Ramat, G. [1 ]
Baroni, F. [1 ]
Santi, E. [1 ]
Lapini, A. [1 ]
Pettinato, S. [1 ]
Paloscia, S. [1 ]
机构
[1] Nello Carrara Natl Res Council IFAC CNR, Inst Appl Phys, Florence, Italy
关键词
Sentinel-1; Sentinel-2; data integration; Google Earth Engine; PRI; Water Cloud Model; IMAGES; NARROW; SOIL;
D O I
10.1109/MetroAgriFor58484.2023.10424133
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
The integration of microwave and multispectral data is an emerging technique allowing frequent monitoring of the vegetation biomass and health status. This study aims at integrating Sentinel-1 (S-1) and Sentinel-2 (S-2) acquisitions for estimating the biomass and assessing the water status of agricultural vegetation. The proposed method has been developed and tested on an agricultural area located in Tuscany, central Italy, by considering the S-1 and S-2 acquisitions collected during the summer season of 2022 on a grain sorghum plot. The method combines vegetation volumetric water content (m(v)) estimated from SAR data and optical/infrared vegetation indexes, in particular NDRE which presented the best correlation with the in-situ PRI measurements. The results show a relationship and trend between NDRE and m(v), although for a limited dataset.
引用
收藏
页码:694 / 698
页数:5
相关论文
共 50 条
  • [21] On water surface delineation in rivers using Landsat-8, Sentinel-1 and Sentinel-2 data
    Possa, Evelyn M.
    Maillard, Philippe
    Gomes, Marilia F.
    Marques Ferreira, Igor Silva
    Leao, Guilherme de Oliveira
    REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY XX, 2018, 10783
  • [22] Evaluating the potential of multi-temporal Sentinel-1 and Sentinel-2 data for regional mapping of olive trees
    Akcay, Haydar
    Aksoy, Samet
    Kaya, Sinasi
    Sertel, Elif
    Dash, Jadu
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2023, 44 (23) : 7338 - 7364
  • [23] Retrieving sparse non-photosynthetic vegetation fractional cover by Sentinel-1 and Sentinel-2
    Ji C.
    Luo Y.
    Li X.
    Xu J.
    Yang X.
    Chen M.
    National Remote Sensing Bulletin, 2023, 27 (12) : 2873 - 2881
  • [24] Modeling and Assessment of Vegetation Water Content on Soil Moisture Retrieval via the Synergistic Use of sentinel-1 and Sentinel-2
    Wang, Qi
    Jin, Taoyong
    Li, Jiancheng
    Chang, Xin
    Li, Yunwei
    Zhu, Yongchao
    EARTH AND SPACE SCIENCE, 2022, 9 (05)
  • [25] The Biomass Proxy: Unlocking Global Agricultural Monitoring through Fusion of Sentinel-1 and Sentinel-2
    Burger, Rogier
    Aouizerats, Benjamin
    den Besten, Nadja
    Guillevic, Pierre
    Catarino, Filipe
    van der Horst, Teije
    Jackson, Daniel
    Koopmans, Regan
    Ridderikhoff, Margot
    Robson, Greg
    Zajdband, Ariel
    de Jeu, Richard
    REMOTE SENSING, 2024, 16 (05)
  • [26] AGB estimation using Sentinel-2 and Sentinel-1 datasets
    Mohammad Qasim
    Elmar Csaplovics
    Environmental Monitoring and Assessment, 2024, 196
  • [27] Crop Water Content of Winter Wheat Revealed with Sentinel-1 and Sentinel-2 Imagery
    Han, Dong
    Liu, Shuaibing
    Du, Ying
    Xie, Xinrui
    Fan, Lingling
    Lei, Lei
    Li, Zhenhong
    Yang, Hao
    Yang, Guijun
    SENSORS, 2019, 19 (18)
  • [28] AGB estimation using Sentinel-2 and Sentinel-1 datasets
    Qasim, Mohammad
    Csaplovics, Elmar
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2024, 196 (03)
  • [29] Woody Above-Ground Biomass Estimation on Abandoned Agriculture Land Using Sentinel-1 and Sentinel-2 Data
    Bucha, Tomas
    Papco, Juraj
    Sackov, Ivan
    Pajtik, Jozef
    Sedliak, Maros
    Barka, Ivan
    Feranec, Jan
    REMOTE SENSING, 2021, 13 (13)
  • [30] Fusion of Sentinel-1 and Sentinel-2 data in mapping the impervious surfaces at city scale
    Shrestha, Binita
    Ahmad, Sajjad
    Stephen, Haroon
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2021, 193 (09)