Robust and multifunctional MXene/rGO composite aerogels toward highly efficient solar-driven interfacial evaporation and wastewater treatment

被引:12
|
作者
Zhang, Guangfa [1 ]
Zhang, Yuekang [1 ]
Jiang, Jingxian [2 ]
机构
[1] Qingdao Univ Sci & Technol, Sch Polymer Sci & Engn, Key Lab Rubber Plast, Shandong Prov Key Lab Rubber Plast,Minist Educ, Qingdao 266042, Peoples R China
[2] Shanghai Inst Technol, Sch Chem & Environm Engn, Shanghai 201418, Peoples R China
关键词
MXene; Graphene oxide; Aerogel; Solar -driven interfacial evaporation; Wastewater treatment; ADSORPTION; CHITOSAN;
D O I
10.1016/j.seppur.2024.127588
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Given the ever-growing global water resource crisis, exploiting multifunctional materials featuring with high interfacial solar steam generation efficiency and good purification capability to achieving seawater desalination and wastewater treatment simultaneously are highly desired, yet it still remains a huge challenge to date. Herein, robust and multifunctional MXene/rGO (MRGA) and polydopamine & chitosan @ MRGA (CS&PDA@MRGA, CPM) three-dimensional composite aerogels with distinct interconnected cellular architecture were developed via a facile ice template-assisted chemical reduction self-assembly technology and subsequent sequential deposition modification. Due to the favorable graphene oxide-assisted assembly behavior, the resultant aerogels displayed a desirable mechanical robustness along with an excellent lightweight property. Benefiting from the strong electrostatic interaction deriving from aerogel surface moieties and dye molecules, MRGA-12 exhibited a prominent adsorption capability towards various dyes and achieved a superb adsorption capacity of up to 396.05 mg/g for malachite green (MG). Moreover, by virtue of the synergistic effect between the intentionally regulated low reduction degree of rGO and the integration of PDA and CS, CPM-12 achieved a dramatically reduced evaporation enthalpy of water from 2256 to 1617.18 J/g. Accordingly, this distinct feature resulted in an extraordinary solar-driven interfacial evaporation performance with a remarkable evaporation rate of 1.86 kg/m2/h and a high evaporation efficiency of 83.28 % under 1 sun illumination. Therefore, together with the terrific oil/water separation capability, these novel MXene-based aerogels hold a great potential for highperformance solar-driven interfacial evaporation and wastewater treatment.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] PTFE-based composite nanofiber membranes for solar-driven interfacial water evaporation
    Yu, Mengmeng
    Jiang, Guohua
    Demir, Muslum
    Sun, Yanfang
    Wang, Rui
    Liu, Tianqi
    MATERIALS TODAY COMMUNICATIONS, 2022, 32
  • [42] Carbonized Bark by Laser Treatment for Efficient Solar-Driven Interface Evaporation
    Zhao, Zejia
    Jia, Guozhi
    Liu, Yanling
    Zhang, Qiurui
    Zhou, Yaoyao
    Chang, Kai
    ACS OMEGA, 2020, 5 (23): : 13482 - 13488
  • [43] Facile Synthesis of Vertically Arranged CNTs for Efficient Solar-Driven Interfacial Water Evaporation
    Su, Lifen
    Liu, Xiaoyu
    Li, Xu
    Yang, Bin
    Wu, Bin
    Xia, Ru
    Qian, Jiasheng
    Zhou, Jianhua
    Miao, Lei
    ACS OMEGA, 2022, 7 (50): : 47349 - 47356
  • [44] Highly efficient MoS2/MXene aerogel for interfacial solar steam generation and wastewater treatment
    Yang, Zeyu
    Wei, Na
    Xue, Na
    Xu, Ruiqi
    Yang, Enquan
    Wang, Fengshuang
    Zhu, Huiling
    Cui, Hongzhi
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 656 : 189 - 199
  • [45] Solar-driven desalination and resource recovery of shale gas wastewater by on-site interfacial evaporation
    Xie, Wancen
    Tang, Peng
    Wu, Qidong
    Chen, Chen
    Song, Zhaoyang
    Li, Tong
    Bai, Yuhua
    Lin, Shihong
    Tiraferri, Alberto
    Liu, Baicang
    CHEMICAL ENGINEERING JOURNAL, 2022, 428
  • [46] A low-cost carbonized Enteromorpha-coated wood for highly efficient solar-driven interfacial water evaporation
    Qiu, Yongfeng
    Lu, Hui
    Chen, Cairong
    COLLOID AND POLYMER SCIENCE, 2024, 302 (01) : 71 - 78
  • [47] Self-floating Porous PVDF-CNT Microbeads for Highly Efficient Solar-driven Interfacial Water Evaporation
    Liang Pingping
    Liu Shuai
    Li Hongyi
    Ding Yadan
    Wen Xiaokun
    Liu Junping
    Hong Xia
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2021, 42 (08): : 2689 - 2693
  • [48] Robust hollow glass microspheres-based solar evaporator with enhanced thermal insulation performance for efficient solar-driven interfacial evaporation
    Wang, S.
    Niu, Y.
    Mu, W.
    Zhu, Z.
    Sun, H.
    Li, J.
    Liang, W.
    Li, A.
    Materials Today Chemistry, 2022, 26
  • [49] Robust hollow glass microspheres-based solar evaporator with enhanced thermal insulation performance for efficient solar-driven interfacial evaporation
    Wang, S.
    Niu, Y.
    Mu, W.
    Zhu, Z.
    Sun, H.
    Li, J.
    Liang, W.
    Li, A.
    MATERIALS TODAY CHEMISTRY, 2022, 26
  • [50] Robust hollow glass microspheres-based solar evaporator with enhanced thermal insulation performance for efficient solar-driven interfacial evaporation
    Wang, S.
    Niu, Y.
    Mu, W.
    Zhu, Z.
    Sun, H.
    Li, J.
    Liang, W.
    Li, A.
    MATERIALS TODAY CHEMISTRY, 2022, 26