On small bases which admit points with two expansions

被引:10
|
作者
Kong, Derong [1 ,4 ]
Li, Wenxia [2 ]
Zou, Yuru [3 ]
机构
[1] Yangzhou Univ, Sch Math Sci, Yangzhou 225002, Jiangsu, Peoples R China
[2] East China Normal Univ, PMMP, Shanghai Key Lab, Dept Math, Shanghai 200062, Peoples R China
[3] Shenzhen Univ, Coll Math & Stat, Shenzhen 518060, Peoples R China
[4] Leiden Univ, Math Inst, POB 9512, NL-2300 RA Leiden, Netherlands
关键词
Beta expansions; Unique expansion; Two expansions; Smallest bases; HAUSDORFF DIMENSION; UNIVOQUE; SETS;
D O I
10.1016/j.jnt.2016.09.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given two positive integers M and k, let B-k(M) be the set of bases q > 1 such that there exists a real number x epsilon [0, M/(q - 1)] having precisely k different q -expansions over the alphabet {0, 1,..., M}. In this paper we consider k=2 and investigate the smallest base q(2)(M) of B-2(M). We prove that for M=2m the smallest base is q(2)(M) = m+1+root m(2)+2m+5/2, and for M = 2m - 1 the smallest base q(2)(M) is the largest positive root of x(4)=(m - 1)x(3) + 2mx(2) + mx+1. Moreover, for M = 2 we show that q(2)(2) is also the smallest base of B-k(2) for all k >= 3. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:100 / 128
页数:29
相关论文
共 50 条
  • [41] SPACES WHICH ADMIT AR-RESOLUTIONS
    KOYAMA, A
    MARDESIC, S
    WATANABE, T
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 102 (03) : 749 - 752
  • [42] Infranilmanifolds which admit complex contact structures
    Kamishima Y.
    European Journal of Mathematics, 2015, 1 (4) : 746 - 761
  • [43] Expansions in Cantor real bases
    Émilie Charlier
    Célia Cisternino
    Monatshefte für Mathematik, 2021, 195 : 585 - 610
  • [44] MANIFOLDS WHICH DO NOT ADMIT ANOSOV DIFFEOMORPHISMS
    SHIRAIWA, K
    NAGOYA MATHEMATICAL JOURNAL, 1973, 49 (MAR) : 111 - 115
  • [45] Which weights on R admit Jackson Theorems?
    Lubinsky, D. S.
    ISRAEL JOURNAL OF MATHEMATICS, 2006, 155 (1) : 253 - 280
  • [46] DECIMAL EXPANSIONS TO NONINTEGRAL BASES
    EGGAN, LC
    VANDENEY.CL
    AMERICAN MATHEMATICAL MONTHLY, 1966, 73 (06): : 576 - &
  • [47] Expansions in Cantor real bases
    Charlier, Emilie
    Cisternino, Celia
    MONATSHEFTE FUR MATHEMATIK, 2021, 195 (04): : 585 - 610
  • [48] A NOTE ON THE SPACES WHICH ADMIT A WHITNEY MAP
    Loncar, Ivan
    RAD HRVATSKE AKADEMIJE ZNANOSTI I UMJETNOSTI-MATEMATICKE ZNANOSTI, 2005, 15 (491): : 195 - 206
  • [49] Common expansions in noninteger bases
    Komornik, Vilmos
    Petho, Attila
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2014, 85 (3-4): : 489 - 501
  • [50] RINGS WHICH ADMIT FAITHFUL TORSION MODULES
    Oman, Greg
    Schwiebert, Ryan
    COMMUNICATIONS IN ALGEBRA, 2012, 40 (06) : 2184 - 2198