Distilroberta2gnn: a new hybrid deep learning approach for aspect-based sentiment analysis

被引:2
|
作者
Alhadlaq, Aseel [1 ]
Altheneyan, Alaa [1 ]
机构
[1] King Saud Univ, Coll Appl Studies & Community Serv, Dept Comp Sci & Engn, Riyadh, Saudi Arabia
关键词
Sentiment analysis; Aspect-based sentiment analysis; Graph neural network; BERT; DistilRoBERTa2GNN;
D O I
10.7717/peerj-cs.2267
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the fi eld of natural language processing (NLP), aspect-based sentiment analysis (ABSA) is crucial for extracting insights from complex human sentiments towards specific fi c text aspects. Despite significant fi cant progress, the fi eld still faces challenges such as accurately interpreting subtle language nuances and the scarcity of high-quality, domain-specific fi c annotated datasets. This study introduces the DistilRoBERTa2GNN model, an innovative hybrid approach that combines the DistilRoBERTa pre-trained model's ' s feature extraction capabilities with the dynamic sentiment classification fi cation abilities of graph neural networks (GNN). Our comprehensive, four-phase data preprocessing strategy is designed to enrich model training with domain-specific, fi c, high-quality data. In this study, we analyze four publicly available benchmark datasets: Rest14, Rest15, Rest16-EN, and Rest16-ESP, to rigorously evaluate the effectiveness of our novel DistilRoBERTa2GNN model in ABSA. For the Rest14 dataset, our model achieved an F1 score of 77.98%, precision of 78.12%, and recall of 79.41%. The Rest15 dataset shows that our model achieves an F1 score of 76.86%, precision of 80.70%, and recall of 79.37%. For the Rest16-EN dataset, our model reached an F1 score of 84.96%, precision of 82.77%, and recall of 87.28%. For Rest16-ESP (Spanish dataset), our model achieved an F1 score of 74.87%, with a precision of 73.11% and a recall of 76.80%. These metrics highlight our model's ' s competitive edge over different baseline models used in ABSA studies. This study addresses critical ABSA challenges and sets a new benchmark for sentiment analysis research, guiding future efforts toward enhancing model adaptability and performance across diverse datasets.
引用
收藏
页数:31
相关论文
共 50 条
  • [21] Improving Twitter Aspect-Based Sentiment Analysis Using Hybrid Approach
    Zainuddin, Nurulhuda
    Selamat, Ali
    Ibrahim, Roliana
    INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2016, PT I, 2016, 9621 : 151 - 160
  • [22] Aspect-Based Sentiment Analysis in Drug Reviews Based on Hybrid Feature Learning
    Sweidan, Asmaa Hashem
    El-Bendary, Nashwa
    Al-Feel, Haytham
    16TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING MODELS IN INDUSTRIAL AND ENVIRONMENTAL APPLICATIONS (SOCO 2021), 2022, 1401 : 78 - 87
  • [23] Hybrid sentiment classification on twitter aspect-based sentiment analysis
    Nurulhuda Zainuddin
    Ali Selamat
    Roliana Ibrahim
    Applied Intelligence, 2018, 48 : 1218 - 1232
  • [24] Research on aspect-based sentiment analysis of movie reviews based on deep learning
    Mao, Hanyue
    Fan, Yang
    Tong, Mingwen
    JOURNAL OF INFORMATION SCIENCE, 2024,
  • [25] An automated approach to aspect-based sentiment analysis of apps reviews using machine and deep learning
    Alturayeif, Nouf
    Aljamaan, Hamoud
    Hassine, Jameleddine
    AUTOMATED SOFTWARE ENGINEERING, 2023, 30 (02)
  • [26] Aspect-Based Sentiment Analysis Approach with CNN
    Mulyo, Budi M.
    Widyantoro, Dwi H.
    2018 5TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, COMPUTER SCIENCE AND INFORMATICS (EECSI 2018), 2018, : 142 - 147
  • [27] An automated approach to aspect-based sentiment analysis of apps reviews using machine and deep learning
    Nouf Alturayeif
    Hamoud Aljamaan
    Jameleddine Hassine
    Automated Software Engineering, 2023, 30
  • [28] A Hybrid Approach for Aspect-Based Sentiment Analysis Using Deep Contextual Word Embeddings and Hierarchical Attention
    Trusca, Maria Mihaela
    Wassenberg, Daan
    Frasincar, Flavius
    Dekker, Rommert
    WEB ENGINEERING, ICWE 2020, 2020, 12128 : 365 - 380
  • [29] Aspect-Based Sentiment Analysis Using Fabricius Ringlet-Based Hybrid Deep Learning for Online Reviews
    Kumari, Santoshi
    Pushphavathi, T. P.
    INTERNATIONAL JOURNAL OF IMAGE AND GRAPHICS, 2025, 25 (02)
  • [30] Complementary Learning of Aspect Terms for Aspect-based Sentiment Analysis
    Qin, Han
    Tian, Yuanhe
    Xia, Fei
    Song, Yan
    LREC 2022: THIRTEEN INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2022, : 7029 - 7039