Triebel-Lizorkin capacity and Hausdorff measure in metric spaces with chain condition

被引:1
|
作者
Mondal, Debarati [1 ]
Karak, Nijjwal [1 ]
机构
[1] Birla Inst Technol & Sci Pilani, Dept Math, Hyderabad Campus, Hyderabad 500078, India
来源
JOURNAL OF ANALYSIS | 2024年 / 32卷 / 06期
关键词
Haj & lstrok; asz-Triebel-Lizorkin capacity; Generalized Hausdorff measure; Chain condition; LOCAL GROWTH ENVELOPES; BESOV CAPACITY; GENERALIZED SMOOTHNESS; SOBOLEV SPACES;
D O I
10.1007/s41478-024-00788-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we improve the lower bound estimate for capacity in Haj & lstrok;asz-Triebel-Lizorkin spaces in terms of Hausdorff Measure obtained in Karak and Mondal (Math Slovaca 73(4): 937-948, 2023) under an additional assumption that the metric space satisfies a chain condition. With the chain condition, we also improve a similar estimate for capacity in Haj & lstrok;asz-Triebel-Lizorkin space with generalized smoothness in terms of Hausdorff Measure obtained in [28].
引用
收藏
页码:3155 / 3172
页数:18
相关论文
共 50 条
  • [1] TRIEBEL-LIZORKIN CAPACITY AND HAUSDORFF MEASURE IN METRIC SPACES
    Karak, Nijjwal
    MATHEMATICA SLOVACA, 2020, 70 (03) : 617 - 624
  • [2] Besov and Triebel-Lizorkin Capacity in Metric Spaces
    Karak, Nijjwal
    Mondal, Debarati
    MATHEMATICA SLOVACA, 2023, 73 (04) : 937 - 948
  • [3] Characterizations of Besov and Triebel-Lizorkin spaces on metric measure spaces
    Gogatishvili, Amiran
    Koskela, Pekka
    Zhou, Yuan
    FORUM MATHEMATICUM, 2013, 25 (04) : 787 - 819
  • [4] Classifying Triebel-Lizorkin Capacities in Metric Spaces
    Lehrback, Juha
    Mohanta, Kaushik
    Vahakangas, Antti V.
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2025, 31 (02)
  • [5] Some new inhomogeneous Triebel-Lizorkin spaces on metric measure spaces and their various characterizations
    Yang, DC
    STUDIA MATHEMATICA, 2005, 167 (01) : 63 - 98
  • [6] Optimal embeddings for Triebel-Lizorkin and Besov spaces on quasi-metric measure spaces
    Alvarado, Ryan
    Yang, Dachun
    Yuan, Wen
    MATHEMATISCHE ZEITSCHRIFT, 2024, 307 (03)
  • [7] Traces of Besov, Triebel-Lizorkin and Sobolev Spaces on Metric Spaces
    Saksman, Eero
    Soto, Tomas
    ANALYSIS AND GEOMETRY IN METRIC SPACES, 2017, 5 (01): : 98 - 115
  • [8] Triebel-Lizorkin Spaces on Metric Spaces via Hyperbolic Fillings
    Bonk, Mario
    Saksman, Eero
    Soto, Tomas
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2018, 67 (04) : 1625 - 1663
  • [9] A WEAK MOLECULE CONDITION FOR CERTAIN TRIEBEL-LIZORKIN SPACES
    HOFMANN, S
    STUDIA MATHEMATICA, 1992, 101 (02) : 113 - 122
  • [10] A Theory of Besov and Triebel-Lizorkin Spaces on Metric Measure Spaces Modeled on Carnot-Caratheodory Spaces
    Han, Yongsheng
    Mueller, Detlef
    Yang, Dachun
    ABSTRACT AND APPLIED ANALYSIS, 2008,