Classifying Triebel-Lizorkin Capacities in Metric Spaces

被引:0
|
作者
Lehrback, Juha [1 ]
Mohanta, Kaushik [1 ]
Vahakangas, Antti V. [1 ]
机构
[1] Univ Jyvaskyla, Dept Math & Stat, POB 35, Jyvaskyla 40014, Finland
基金
芬兰科学院;
关键词
Comparison of capacities; Capacity density condition; Haj & lstrok; asz-Triebel-Lizorkin space; Riesz capacity; Metric measure space; MAXIMAL FUNCTIONS; LEBESGUE POINTS; OPERATOR; BESOV;
D O I
10.1007/s00041-025-10147-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study nonlocal or fractional capacities in metric measure spaces. Our main goal is to clarify the relations between relative Haj & lstrok;asz-Triebel-Lizorkin capacities, potentional Triebel-Lizorkin capacities, and metric space variants of Riesz capacities. As an application of our results, we obtain a characterization of a Haj & lstrok;asz-Triebel-Lizorkin capacity density condition, which is based on an earlier characterization of a Riesz capacity density condition in terms of Hausdorff contents.
引用
收藏
页数:50
相关论文
共 50 条
  • [1] Besov and Triebel-Lizorkin Capacity in Metric Spaces
    Karak, Nijjwal
    Mondal, Debarati
    MATHEMATICA SLOVACA, 2023, 73 (04) : 937 - 948
  • [2] Traces of Besov, Triebel-Lizorkin and Sobolev Spaces on Metric Spaces
    Saksman, Eero
    Soto, Tomas
    ANALYSIS AND GEOMETRY IN METRIC SPACES, 2017, 5 (01): : 98 - 115
  • [3] Triebel-Lizorkin Spaces on Metric Spaces via Hyperbolic Fillings
    Bonk, Mario
    Saksman, Eero
    Soto, Tomas
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2018, 67 (04) : 1625 - 1663
  • [4] Characterizations of Besov and Triebel-Lizorkin spaces on metric measure spaces
    Gogatishvili, Amiran
    Koskela, Pekka
    Zhou, Yuan
    FORUM MATHEMATICUM, 2013, 25 (04) : 787 - 819
  • [5] TRIEBEL-LIZORKIN CAPACITY AND HAUSDORFF MEASURE IN METRIC SPACES
    Karak, Nijjwal
    MATHEMATICA SLOVACA, 2020, 70 (03) : 617 - 624
  • [6] Embeddings between Triebel-Lizorkin Spaces on Metric Spaces Associated with Operators
    Georgiadis, Athanasios G.
    Kyriazis, George
    ANALYSIS AND GEOMETRY IN METRIC SPACES, 2020, 8 (01): : 418 - 429
  • [7] Holomorphic Triebel-Lizorkin spaces
    Ortega, JM
    Fabrega, J
    JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 151 (01) : 177 - 212
  • [8] Besov and Triebel-Lizorkin spaces on metric spaces: Embeddings and pointwise multipliers
    Yuan, Wen
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 453 (01) : 434 - 457
  • [9] SPACES OF TRIEBEL-LIZORKIN TYPE
    PEETRE, J
    ARKIV FOR MATEMATIK, 1975, 13 (01): : 123 - 130
  • [10] GENERALIZED BESOV SPACES AND TRIEBEL-LIZORKIN SPACES
    Chin-Cheng Lin
    AnalysisinTheoryandApplications, 2008, 24 (04) : 336 - 350