Spatial-Spectral Transformer for Hyperspectral Image Denoising

被引:0
|
作者
Li, Miaoyu [1 ]
Fu, Ying [1 ]
Zhang, Yulun [2 ]
机构
[1] Beijing Inst Technol, Beijing, Peoples R China
[2] Swiss Fed Inst Technol, Zurich, Switzerland
基金
中国国家自然科学基金;
关键词
SPARSE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hyperspectral image (HSI) denoising is a crucial preprocessing procedure for the subsequent HSI applications. Unfortunately, though witnessing the development of deep learning in HSI denoising area, existing convolution-based methods face the trade-off between computational efficiency and capability to model non-local characteristics of HSI. In this paper, we propose a Spatial-Spectral Transformer (SST) to alleviate this problem. To fully explore intrinsic similarity characteristics in both spatial dimension and spectral dimension, we conduct non-local spatial self-attention and global spectral self-attention with Transformer architecture. The window-based spatial self-attention focuses on the spatial similarity beyond the neighboring region. While, the spectral self-attention exploits the long-range dependencies between highly correlative bands. Experimental results show that our proposed method outperforms the state-of-the-art HSI denoising methods in quantitative quality and visual results. The code is released at https://github.com/MyuLi/SST.
引用
收藏
页码:1368 / 1376
页数:9
相关论文
共 50 条
  • [41] Cross-Channel Dynamic Spatial-Spectral Fusion Transformer for Hyperspectral Image Classification
    Qiu, Zhao
    Xu, Jie
    Peng, Jiangtao
    Sun, Weiwei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [42] Spatial-Spectral Aggregation Transformer With Diffusion Prior for Hyperspectral Image Super-Resolution
    Zhang, Mingyang
    Wang, Xiangyu
    Wu, Shuang
    Wang, Zhaoyang
    Gong, Maoguo
    Zhou, Yu
    Jiang, Fenlong
    Wu, Yue
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2025, 35 (04) : 3557 - 3572
  • [43] GTFN: GCN and Transformer Fusion Network With Spatial-Spectral Features for Hyperspectral Image Classification
    Yang, Aitao
    Li, Min
    Ding, Yao
    Hong, Danfeng
    Lv, Yilong
    He, Yujie
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [44] CAT: Center Attention Transformer With Stratified Spatial-Spectral Token for Hyperspectral Image Classification
    Feng, Jiaqi
    Wang, Qixiong
    Zhang, Guangyun
    Jia, Xiuping
    Yin, Jihao
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 15
  • [45] When Multigranularity Meets Spatial-Spectral Attention: A Hybrid Transformer for Hyperspectral Image Classification
    Ouyang, Er
    Li, Bin
    Hu, Wenjing
    Zhang, Guoyun
    Zhao, Lin
    Wu, Jianhui
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [46] SSLT-Net: A Spatial-Spectral Linear Transformer Unmixing Network for Hyperspectral Image
    Deng, Jiangwei
    Zhang, Guanglian
    Zhang, Zhanxu
    Bian, Lifeng
    Yang, Chen
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2025, 22
  • [47] BS2T: Bottleneck Spatial-Spectral Transformer for Hyperspectral Image Classification
    Song, Ruoxi
    Feng, Yining
    Cheng, Wei
    Mu, Zhenhua
    Wang, Xianghai
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [48] GTFN: GCN and Transformer Fusion Network With Spatial-Spectral Features for Hyperspectral Image Classification
    Yang, Aitao
    Li, Min
    Ding, Yao
    Hong, Danfeng
    Lv, Yilong
    He, Yujie
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [49] Spectral Enhanced Rectangle Transformer for Hyperspectral Image Denoising
    Li, Miaoyu
    Liu, Ji
    Fu, Ying
    Zhang, Yulun
    Dou, Dejing
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 5805 - 5814
  • [50] Hyperspectral Image Denoising Using Group Low-Rank and Spatial-Spectral Total Variation
    Ince, Taner
    IEEE ACCESS, 2019, 7 : 52095 - 52109