SRSN: A Semi-Supervised Robust Self-Ensemble Network for Hyperspectral Images Classification

被引:0
|
作者
Song, Haifeng [1 ]
Yang, Weiwei [1 ]
机构
[1] Taizhou Univ, Sch Elect & Informat Engn, Taizhou 318000, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Hyperspectral images (HSIs); self-ensemble; semi-supervised; spatial-spectral deformable; SPECTRAL-SPATIAL CLASSIFICATION; RESIDUAL NETWORK;
D O I
10.1109/LGRS.2024.3387753
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The convolutional neural network (CNN) has promoted hyperspectral images (HSIs) classification performance. However, the size of the convolutional kernel is fixed, whereas the size of objects in HSIs varies greatly; training a CNN requires a large number of samples with label, but manually tagging each pixel of HSIs is time-consuming and labor-intensive. To address above problems, a semi-supervised robust self-ensemble network (SRSN) is proposed in this letter. The SRSN contains a basic network and an ensemble network. The two networks can learn from each other to realize self-ensemble learning. Specifically, the deformable convolution, which is originally applied to the spatial dimension, is extended to the spectral dimension, thereby effectively solves the problem of CNN's fixed convolutional kernel. Concurrently, to enhance the performance of the semi-supervised classifier, a consistency filter is proposed to screen unlabeled samples with high confidence. Experiments were carried out on the international common test datasets. The experimental results fully prove that the SRSN model proposed in this letter is superior to other methods and achieves 97.28%, 82.88%, and 89.13% OA of PaviaCenter, Houston2013, and WHU-Hi-HongHu datasets.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 50 条
  • [41] Semi-supervised deep learning for hyperspectral image classification
    Kang, Xudong
    Zhuo, Binbin
    Duan, Puhong
    REMOTE SENSING LETTERS, 2019, 10 (04) : 353 - 362
  • [42] Classification of hyperspectral data by continuation semi-supervised SVM
    Chi, Mingmin
    Bruzzone, Lorenzo
    IGARSS: 2007 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-12: SENSING AND UNDERSTANDING OUR PLANET, 2007, : 3794 - +
  • [43] Semi-supervised feature learning for hyperspectral image classification
    Zhang, Pengfei
    Cao, Liujuan
    Wang, Cheng
    Li, Jonathan
    2ND ISPRS INTERNATIONAL CONFERENCE ON COMPUTER VISION IN REMOTE SENSING (CVRS 2015), 2016, 9901
  • [44] Semi-supervised multiview embedding for hyperspectral data classification
    Volpi, Michele
    Matasci, Giona
    Kanevski, Mikhail
    Tuia, Devis
    NEUROCOMPUTING, 2014, 145 : 427 - 437
  • [45] An efficient semi-supervised classification approach for hyperspectral imagery
    Tan, Kun
    Li, Erzhu
    Du, Qian
    Du, Peijun
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2014, 97 : 36 - 45
  • [46] SEMI-SUPERVISED CLASSIFICATION OF HYPERSPECTRAL IMAGES USING DISCRETE NONLOCAL VARIATION POTTS MODEL
    Ge, Linyao
    Huang, Baoxiang
    Wei, Weibo
    Pan, Zhenkuan
    MATHEMATICAL FOUNDATIONS OF COMPUTING, 2021, 4 (02): : 73 - 88
  • [47] Semi-supervised hierarchical Transformer for hyperspectral Image classification
    He, Ziping
    Zhu, Qianglin
    Xia, Kewen
    Ghamisi, Pedram
    Zu, Baokai
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2024, 45 (01) : 21 - 50
  • [48] Semi-Supervised Hyperspectral Image Classification with Multiscale Kernels
    Cui, Li
    Liu, Lu
    Chen, Di-Rong
    INTERNATIONAL CONFERENCE ON CIVIL, MECHANICAL AND MATERIAL ENGINEERING (ICCMME 2018), 2018, 1973
  • [49] Projected estimators for robust semi-supervised classification
    Krijthe, Jesse H.
    Loog, Marco
    MACHINE LEARNING, 2017, 106 (07) : 993 - 1008
  • [50] Projected estimators for robust semi-supervised classification
    Jesse H. Krijthe
    Marco Loog
    Machine Learning, 2017, 106 : 993 - 1008