RailPC: A large-scale railway point cloud semantic segmentation dataset

被引:2
|
作者
Jiang, Tengping [1 ,2 ,3 ]
Li, Shiwei [1 ]
Zhang, Qinyu [1 ]
Wang, Guangshuai [4 ]
Zhang, Zequn [5 ]
Zeng, Fankun [6 ]
An, Peng [7 ]
Jin, Xin [3 ]
Liu, Shan [1 ]
Wang, Yongjun [1 ]
机构
[1] Nanjing Normal Univ, Jiangsu Ctr Collaborat Innovat Geog Informat Resou, Nanjing, Peoples R China
[2] Minist Nat Resources, Technol Innovat Ctr Integrated Applicat Remote Sen, Nanjing, Peoples R China
[3] Eastern Inst Technol EIT, Ningbo, Peoples R China
[4] Tianjin Key Lab Rail Transit Nav Positioning & Spa, Tianjin, Peoples R China
[5] Northwest Normal Univ, Coll Comp Sci & Engn, Lanzhou, Peoples R China
[6] Washington Univ St Louis, McKelvey Sch Engn, St Louis, MO USA
[7] Ningbo Univ Technol, Sch Elect & Informat Engn, Ningbo, Peoples R China
基金
中国国家自然科学基金;
关键词
3-D; data acquisition; scene understanding; segmentation; CONTEXTUAL CLASSIFICATION; EXTRACTION; BENCHMARK; SCENE;
D O I
10.1049/cit2.12349
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Semantic segmentation in the context of 3D point clouds for the railway environment holds a significant economic value, but its development is severely hindered by the lack of suitable and specific datasets. Additionally, the models trained on existing urban road point cloud datasets demonstrate poor generalisation on railway data due to a large domain gap caused by non-overlapping special/rare categories, for example, rail track, track bed etc. To harness the potential of supervised learning methods in the domain of 3D railway semantic segmentation, we introduce RailPC, a new point cloud benchmark. RailPC provides a large-scale dataset with rich annotations for semantic segmentation in the railway environment. Notably, RailPC contains twice the number of annotated points compared to the largest available mobile laser scanning (MLS) point cloud dataset and is the first railway-specific 3D dataset for semantic segmentation. It covers a total of nearly 25 km railway in two different scenes (urban and mountain), with 3 billion points that are finely labelled as 16 most typical classes with respect to railway, and the data acquisition process is completed in China by MLS systems. Through extensive experimentation, we evaluate the performance of advanced scene understanding methods on the annotated dataset and present a synthetic analysis of semantic segmentation results. Based on our findings, we establish some critical challenges towards railway-scale point cloud semantic segmentation. The dataset is available at , and we will continuously update it based on community feedback.
引用
收藏
页码:1548 / 1560
页数:13
相关论文
共 50 条
  • [41] NeiEA-NET: Semantic segmentation of large-scale point cloud scene via neighbor enhancement and aggregation
    Xu, Yongyang
    Tang, Wei
    Zeng, Ziyin
    Wu, Weichao
    Wan, Jie
    Guo, Han
    Xie, Zhong
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2023, 119
  • [42] ResDLPS-Net: Joint residual-dense optimization for large-scale point cloud semantic segmentation
    Du, Jing
    Cai, Guorong
    Wang, Zongyue
    Huang, Shangfeng
    Su, Jinhe
    Marcato Junior, Jose
    Smit, Julian
    Li, Jonathan
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2021, 182 (182) : 37 - 51
  • [43] LPFE-Net: a local parallel feature extraction network for large-scale point cloud semantic segmentation
    Ai, Da
    Zhang, Xiaoyang
    Xu, Ce
    Liu, Xinlong
    Yuan, Hui
    Liu, Ying
    JOURNAL OF ELECTRONIC IMAGING, 2023, 32 (05)
  • [44] HFA-Net: hybrid feature-aware network for large-scale point cloud semantic segmentation
    Wen, Changji
    Zhang, Long
    Ren, Junfeng
    Hong, Rundong
    Li, Chenshuang
    Yang, Ce
    Lv, Yanfeng
    Chen, Hongbing
    Yang, Ning
    ARTIFICIAL INTELLIGENCE REVIEW, 2025, 58 (04)
  • [45] 3D point cloud semantic segmentation toward large-scale unstructured agricultural scene classification
    Chen, Yi
    Xiong, Yingjun
    Zhang, Baohua
    Zhou, Jun
    Zhang, Qian
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2021, 190
  • [46] EDGE-CONVOLUTION POINT NET FOR SEMANTIC SEGMENTATION OF LARGE-SCALE POINT CLOUDS
    Contreras, Jhonatan
    Denzler, Joachim
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 5236 - 5239
  • [47] TriEn-Net: Non-parametric Representation Learning for Large-Scale Point Cloud Semantic Segmentation
    Wang, Yifei
    Miao, Jixiang
    Du, Anan
    Gu, Xiang
    Pang, Shuchao
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT VI, 2025, 15036 : 417 - 430
  • [48] DPANet: Position-aware feature encoding and decoding for accurate large-scale point cloud semantic segmentation
    Zhao, Haoying
    Zhou, Aimin
    IET COMPUTER VISION, 2024,
  • [49] LGMamba: Large-Scale ALS Point Cloud Semantic Segmentation With Local and Global State-Space Model
    Li, Dilong
    Zhao, Jing
    Chang, Chongkei
    Chen, Ziyi
    Du, Jixiang
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2025, 22
  • [50] YUTO SEMANTIC: A LARGE SCALE AERIAL LIDAR DATASET FOR SEMANTIC SEGMENTATION
    Yoo, S.
    Ko, C.
    Sohn, G.
    Lee, H.
    GEOSPATIAL WEEK 2023, VOL. 48-1, 2023, : 209 - 215