Unveiling the Power of Social Influence: A Machine Learning Framework for Churn Prediction With Network Analysis

被引:0
|
作者
Amiri, Babak [1 ]
Hosseini, Seyed Hasan [1 ]
机构
[1] Iran Univ Sci & Technol, Sch Ind Engn, Tehran 1684613114, Iran
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Social network; influence analysis; conformity analysis; customer churn; machine learning; CUSTOMER CHURN;
D O I
10.1109/ACCESS.2024.3402684
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Customer churn is a significant concern for firms due to the high cost of acquiring new customers. The expenditure related to developing new consumers surpasses that of customer retention. Customer churn prediction models were given to analyze the impact of this problem on organizations' revenues. These models primarily utilize machine learning algorithms to predict outcomes using data from demographic factors and customer service information components. This study investigates the impact of social relationships on customer churn probability and evaluates the performance of machine learning methods after introducing a new concept called the conformity factor. To improve the performance of standard machine learning models, we performed feature engineering by leveraging phone call network data and developing influence and conformity metrics. These metrics capture the social connections of individuals within the network. We employed various machine learning classification approaches and evaluated their performance using standard measures like AUC, accuracy, precision, F1-score, MCC, Cohen's kappa, and Brier score. The experiments demonstrated that incorporating these social network variables, particularly the proposed influence and conformity indices, significantly enhanced the performance of all churn prediction models developed in this study. Among the tested approaches, the gradient boosting model achieved the highest level of performance.
引用
收藏
页码:71271 / 71285
页数:15
相关论文
共 50 条
  • [32] Application of Machine Learning and Statistics in Banking Customer Churn Prediction
    Shukla, Animesh
    2021 8TH INTERNATIONAL CONFERENCE ON SMART COMPUTING AND COMMUNICATIONS (ICSCC), 2021, : 37 - 41
  • [33] Telecommunication Subscribers' Churn Prediction Model Using Machine Learning
    Qureshi, Saad Ahmed
    Rehman, Ammar Saleem
    Qamar, Ali Mustafa
    Kamal, Aatif
    Rehman, Ahsan
    2013 EIGHTH INTERNATIONAL CONFERENCE ON DIGITAL INFORMATION MANAGEMENT (ICDIM), 2013, : 131 - 136
  • [34] Application of machine learning techniques for churn prediction in the telecom business
    Krishna, Raji
    Jayanthi, D.
    Sam, D. S. Shylu
    Kavitha, K.
    Maurya, Naveen Kumar
    Benil, T.
    RESULTS IN ENGINEERING, 2024, 24
  • [35] A Robust Model for Churn Prediction using Supervised Machine Learning
    Bhatnagar, Anurag
    Srivastava, Sumit
    PROCEEDINGS OF THE 2019 IEEE 9TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING (IACC 2019), 2019, : 45 - 49
  • [36] Machine Learning to Develop Credit Card Customer Churn Prediction
    AL-Najjar, Dana
    Al-Rousan, Nadia
    AL-Najjar, Hazem
    JOURNAL OF THEORETICAL AND APPLIED ELECTRONIC COMMERCE RESEARCH, 2022, 17 (04): : 1529 - 1542
  • [37] Combining Local and Social Network Classifiers to Improve Churn Prediction
    Backiel, Aimee
    Verbinnen, Yannick
    Baesens, Bart
    Claeskens, Gerda
    PROCEEDINGS OF THE 2015 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM 2015), 2015, : 651 - 658
  • [38] Learning Multiple Network Embeddings for Social Influence Prediction
    Wang, Feng
    She, Jinhua
    Ohyama, Yasuhiro
    Wu, Min
    IFAC PAPERSONLINE, 2020, 53 (02): : 2868 - 2873
  • [39] Churn Prediction by Finding Most Influential nodes in Social Network
    Pagare, Reena
    Khare, Akhil
    2016 INTERNATIONAL CONFERENCE ON COMPUTING, ANALYTICS AND SECURITY TRENDS (CAST), 2016, : 68 - 71
  • [40] Churn Prediction of Private Golf Club Membership sing Machine Learning
    Mangulabnan, Louis A.
    De Goma, Joel C.
    Balan, Ariel Kelly D.
    2022 12TH INTERNATIONAL CONFERENCE ON SOFTWARE TECHNOLOGY AND ENGINEERING, ICSTE, 2022, : 125 - 130