Automated 3D Tumor Segmentation From Breast DCE-MRI Using Energy-Tuned Minimax Optimization

被引:0
|
作者
Babu, Priyadharshini [1 ]
Asaithambi, Mythili [1 ]
Suriyakumar, Sudhakar Mogappair [1 ]
机构
[1] Vellore Inst Technol, Sch Elect Engn, Vellore 632014, Tamil Nadu, India
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Tumors; Three-dimensional displays; Optimization; Image segmentation; Analytical models; Mathematical models; Complexity theory; Breast cancer; BEFVBTS; DCE-MRI; energy functionals; line search; variational minimax optimization; INFORMATION; IMAGES;
D O I
10.1109/ACCESS.2024.3417488
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Breast cancer (BC) is a multifaceted genetic malignancy that accounts for the majority of cancer fatalities in women. Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) is predominant in evaluating perfusion, extravascular-extracellular volume fraction, and microvascular vessel wall permeability in breast cancer patients. Precise tumor segmentation using DCE-MRI is a key component of assessing diagnosis and treatment planning. However, the slice-wise analysis of DCE-MRI fails to preserve 3D surface continuity and is insufficient for evaluating the invasion depth of the tumor. Hence, this work proposes an analytical model labeled as Bezier-tuned Energy Functionals optimized via variational minimax for Volumetric Breast Tumor Segmentation (BEFVBTS). The formulated energy functionals consist of non-linear convex edge-sensitive data and regularization terms. Also, the variational minimax technique adopts gradient descent with an exact line search algorithm for obtaining a global minimax solution. The self-analysis of BEFVBTS on the Duke- Breast-Cancer-MRI dataset registered remarkable performance in segmenting tumors with different grades (Grade 1,2 & 3). Likewise, the relative analysis on QIN Breast DCE-MRI and TCGA-BRCA datasets revealed improvements of 8%, 22%, 8.7%, 4%, 0.120%, and 68.17% in Dice, Jaccard, Precision, Sensitivity, Specificity, and Hausdorff distance (HD) respectively over the recent competitors. At last, the complexity analysis of the model demonstrated simplicity and amicability for its extension to real-time clinical applications.
引用
收藏
页码:87532 / 87544
页数:13
相关论文
共 50 条
  • [41] Enhancing Brain Flow Visualization with Automated 3D Data Processing: A Study on DCE-MRI Data from Mice with Tumors
    Mohammed, Ayat
    Polys, Nicholas F.
    Cunningham, Jessica
    Munson, Jenny
    Chutkowski, James
    Liang, Hun
    Park, Daniel
    Rockne, Russell
    Woodall, Ryan
    Esparza, Cora
    28TH INTERNATIONAL CONFERENCE ON WEB3D TECHNOLOGY, WEB3D 2023, 2023,
  • [42] Breast MRI Multi-tumor Segmentation Using 3D Region Growing
    Pereira, Teresa M. C.
    Pelicano, Ana Catarina
    Godinho, Daniela M.
    Goncalves, Maria C. T.
    Castela, Tiago
    Orvalho, Maria Lurdes
    Sencadas, Vitor
    Sebastiao, Raquel
    Conceicao, Raquel C.
    PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, CIARP 2023, PT II, 2024, 14470 : 15 - 29
  • [43] A robust and efficient AI assistant for breast tumor segmentation from DCE-MRI via a spatial-temporal framework
    Zhang, Jiadong
    Cui, Zhiming
    Shi, Zhenwei
    Jiang, Yingjia
    Zhang, Zhiliang
    Dai, Xiaoting
    Yang, Zhenlu
    Gu, Yuning
    Zhou, Lei
    Han, Chu
    Huang, Xiaomei
    Ke, Chenglu
    Li, Suyun
    Xu, Zeyan
    Gao, Fei
    Zhou, Luping
    Wang, Rongpin
    Liu, Jun
    Zhang, Jiayin
    Ding, Zhongxiang
    Sun, Kun
    Li, Zhenhui
    Liu, Zaiyi
    Shen, Dinggang
    PATTERNS, 2023, 4 (09):
  • [44] Pathophysiological mapping of tumor habitats in the breast in DCE-MRI using molecular texture descriptor
    da Silva Neto, Otilio Paulo
    Lima Araujo, Jose Denes
    Caldas Oliveira, Ana Gabriela
    Cutrim, Mara
    Silva, Aristofanes Correa
    Paiva, Anselmo Cardoso
    Gattass, Marcelo
    COMPUTERS IN BIOLOGY AND MEDICINE, 2019, 106 : 114 - 125
  • [45] Automated 3D MRI pancreas segmentation
    Sheng, K.
    Gou, S.
    Hu, P.
    RADIOTHERAPY AND ONCOLOGY, 2016, 119 : S892 - S893
  • [46] Combining MRF Energy and DCE-MRI Time-domain Features for Breast Tumors Segmentation Algorithm
    Zhou Haoyang
    Feng Bao
    Qi Feifei
    Liu Zhuangsheng
    Long Wansheng
    ACTA PHOTONICA SINICA, 2021, 50 (06)
  • [47] Automated Segmentation of Colorectal Tumor in 3D MRI Using 3D Multiscale Densely Connected Convolutional Neural Network
    Soomro, Mumtaz Hussain
    Coppotelli, Matteo
    Conforto, Silvia
    Schmid, Maurizio
    Giunta, Gaetano
    Del Secco, Lorenzo
    Neri, Emanuele
    Caruso, Damiano
    Rengo, Marco
    Laghi, Andrea
    JOURNAL OF HEALTHCARE ENGINEERING, 2019, 2019
  • [48] Automatic semantic segmentation of breast cancer in DCE-MRI using DeepLabV3+with modified ResNet50
    Star, C. Sahaya Pushpa Sarmila
    Inbamalar, T. M.
    Milton, A.
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 99
  • [49] Automatic Tumor Segmentation in 3D Automated Breast Ultrasound using Convolutional Neural Network
    Lei, Yang
    He, Xiuxiu
    Wang, Tonghe
    Yao, Jincao
    Wang, Lijing
    Li, Wei
    Curran, Walter J.
    Liu, Tian
    Xu, Dong
    Yang, Xiaofeng
    MEDICAL IMAGING 2021: ULTRASONIC IMAGING AND TOMOGRAPHY, 2021, 11602
  • [50] Segmentation of Parathyroid Tumors from DCE-MRI using Linear Dynamic System Analysis
    Jayender, J.
    Ruan, D. T.
    Narayan, V.
    Agrawal, N.
    Jolesz, F. A.
    Mamata, H.
    2013 IEEE 10TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2013, : 1469 - 1472