Unsupervised Visual Anomaly Detection Using Self-Supervised Pre-Trained Transformer

被引:0
|
作者
Kim, Jun-Hyung [1 ]
Kwon, Goo-Rak [1 ]
机构
[1] Chosun Univ, Dept Informat & Commun Engn, Gwangju 61452, South Korea
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Image reconstruction; Image segmentation; Transformers; Computational modeling; Location awareness; Feature extraction; Anomaly detection; Data augmentation; Self-supervised learning; data-augmentation; self-supervised learning; transformer;
D O I
10.1109/ACCESS.2024.3454753
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the various industrial manufacturing processes, the automatic visual inspection system is an essential part as it reduces the chances of delivering defective products and the cost of training and hiring experts for manual inspection. In this work, we propose a new unsupervised anomaly detection method inspired by the masked language model for the automatic visual inspection system. The proposed method consists of an image tokenizer and two subnetworks, a reconstruction subnetwork, and a segmentation subnetwork. We adopt a pre-trained self-supervised vision Transformer model to use it as an image tokenizer. Our first subnetwork is trained to predict the anomaly-free patch tokens and the second subnetwork is trained to produce anomaly segmentation results from both the reconstructed and input patch tokens. During training, only the two subnetworks are optimized, and parameters of an image tokenizer are frozen. Experimental results show that the proposed method exhibits better performance than conventional methods in detecting defective products by achieving 99.05% I-AUROC on MVTecAD dataset and 94.8% I-AUROC on BTAD.
引用
收藏
页码:127604 / 127613
页数:10
相关论文
共 50 条
  • [41] A PRE-TRAINED AUDIO-VISUAL TRANSFORMER FOR EMOTION RECOGNITION
    Minh Tran
    Soleymani, Mohammad
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 4698 - 4702
  • [42] Self-supervised pseudo multi-class pre-training for unsupervised anomaly detection and segmentation in medical images
    Tian, Yu
    Liu, Fengbei
    Pang, Guansong
    Chen, Yuanhong
    Liu, Yuyuan
    Verjans, Johan W.
    Singh, Rajvinder
    Carneiro, Gustavo
    MEDICAL IMAGE ANALYSIS, 2023, 90
  • [43] NODULE DETECTION IN CHEST RADIOGRAPHS WITH UNSUPERVISED PRE-TRAINED DETECTION TRANSFORMERS
    Behrendt, Finn
    Bhattacharya, Debayan
    Krueger, Julia
    Opfer, Roland
    Schlaefer, Alexander
    2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,
  • [44] CheSS: Chest X-Ray Pre-trained Model via Self-supervised Contrastive Learning
    Kyungjin Cho
    Ki Duk Kim
    Yujin Nam
    Jiheon Jeong
    Jeeyoung Kim
    Changyong Choi
    Soyoung Lee
    Jun Soo Lee
    Seoyeon Woo
    Gil-Sun Hong
    Joon Beom Seo
    Namkug Kim
    Journal of Digital Imaging, 2023, 36 : 902 - 910
  • [45] CheSS: Chest X-Ray Pre-trained Model via Self-supervised Contrastive Learning
    Cho, Kyungjin
    Kim, Ki Duk
    Nam, Yujin
    Jeong, Jiheon
    Kim, Jeeyoung
    Choi, Changyong
    Lee, Soyoung
    Lee, Jun Soo
    Woo, Seoyeon
    Hong, Gil-Sun
    Seo, Joon Beom
    Kim, Namkug
    JOURNAL OF DIGITAL IMAGING, 2023, 36 (03) : 902 - 910
  • [46] ON FINE-TUNING PRE-TRAINED SPEECH MODELS WITH EMA-TARGET SELF-SUPERVISED LOSS
    Yang, Hejung
    Kang, Hong-Goo
    2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, ICASSP 2024, 2024, : 6360 - 6364
  • [47] Adapting Pre-Trained Self-Supervised Learning Model for Speech Recognition with Light-Weight Adapters
    Yue, Xianghu
    Gao, Xiaoxue
    Qian, Xinyuan
    Li, Haizhou
    ELECTRONICS, 2024, 13 (01)
  • [48] Self-Supervised Anomaly Detection With Neural Transformations
    Qiu, Chen
    Kloft, Marius
    Mandt, Stephan
    Rudolph, Maja
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2025, 47 (03) : 2170 - 2185
  • [49] SELF-SUPERVISED ANOMALY DETECTION FOR NARROWBAND SETI
    Zhang, Yunfan Gerry
    Won, Ki Hyun
    Son, Seung Woo
    Siemion, Andrew
    Croft, Steve
    2018 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2018), 2018, : 1114 - 1118
  • [50] Self-supervised anomaly detection for new physics
    Dillon, Barry M.
    Mastandrea, Radha
    Nachman, Benjamin
    PHYSICAL REVIEW D, 2022, 106 (05)